欢迎访问政务文库!

2023初中数学说课稿

APLUS 分享 时间: 加入收藏 我要投稿 点赞

希望这份教案能够帮助教师更好地掌握相关的教学方法和技巧,提高教学质量,为学生的成长和发展做出更大的贡献。下面是小编为大家整理的2023初中数学说课稿,如果大家喜欢可以分享给身边的朋友。

2023初中数学说课稿【篇1】

一、说教材

本课时是华师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一。 勾股定理是我国古数学的一项伟大成就。勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用。 据此,制定教学目标如下:

1、知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解。

2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的.。

3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。

教学重点:勾股定理的应用。

教学难点:勾股定理的正确使用。

教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理。

二、说教法和学法

1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

2、切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

3、通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望。

三、教学程序

本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下:

一、回顾问:

勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用。

二、新授课例

1、如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14.2.1)

①学生取出自制圆柱,,尝试从A点到C点沿圆柱侧面画出几条路线。思考:那条路线最短?

②如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路线是什么?你画得对吗?

③蚂蚁从A点出发,想吃到C点处的食物,它沿圆柱侧面爬行的最短路线是什么?

思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”。 学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例2.(课本P58图14.2.3)

思路点拨:厂门的宽度是足够的,这个问题的关键是观察当卡车位于厂门正中间时其高度是否小于CH,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H,寻找出Rt△OCD,运用勾股定理求出2.3m,CD= = =0.6,CH=0.6+2.3=2.9>2.5可见卡车能顺利通过 。详细解题过程看课本 引导学生完成P58做一做。

三、课堂小练

1、课本P58练习第1,2题。

2、探究: 一门框的尺寸如图所示,一块长3米,宽2.2米的薄木板是否能从门框内通过?为什么?

四、小结

直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的具体应用,那样就能很轻松的解决现实生活中的许多问题,达到事倍功半的效果。

五、布置作业

课本P60习题14.2第1,2,3题。

2023初中数学说课稿【篇2】

今天我说课的内容是八年级数学下册《分式方程》的第二课时,我将从以下几方面进行介绍。

一 教材的地位和作用:

本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。跟这部分内容有关联的是后面列方程解应用题,学好这一节课,将为下节课的学习打下基础。

二、教学目标

1.使学生理解分式方程的意义。

2.使学生掌握可化为一元一次方程的分式方程的一般解法。

3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验根方法。

4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧。

5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想。

三、重、难点的分析

本节重点是可化为一元一次方程的分式方程求解中的转化。解分式方程的基本思想是:设法去掉分式方程的分母,把分式方程转化为整式方程,这是分式方程求解的关键,因此转化过程中主要是找方程两边的最简公分母。难点分析:解分式方程学生容易出错,关键不能理解在方程变形的过程中产生增根的原因,对于八年级学生理解有一定的困难,可以结合实例让学生了解方程两边同乘的是整式,整式可能为零不能满足方程同解变换的原则,因此求解分式方程一定要验根。

四、教学方法:

本节内容从以前所学过的分式方程的`概念出发,介绍分式方程的求解方法。再加上数学学科的特点,所以本节课采用了启发式、引导式教学方法。特别注重"精讲多练",真正体现以学生为主体。上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生上黑板以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。

五、教学过程

(一)复习:

(1) 什么叫分式方程?

设计意图:主要让学生继续区分整式方程与分式方程的区别,为新授做铺垫,使学生能积极投入到下面环节的学习。

(二)新授:

(1)学生学习例题交流讨论,找两组同学到黑板上尝试解题。

设计意图:通过学生对例题的合作研究,使每个学生对分式方程的解法有一个初步的认识,在此环节,鼓励同学大胆交流、发表自己的见解,同时学会聆听。培养同学们的合作意识。教师在此时对学生的问题要做出适当的评价,给同学以鼓励和引导。

(2)讲解例题:7/x-2=5/x

解:方程两边同乘x(x-2),约去分母,得

5(x-2)=7x解这个整式方程,得

x=5.

检验:把x=-5代入最简公分母

x(x-2)=35≠0,

∴x=-5是原方程的解。

设计意图;在此环节,教师鼓励同学们亲自体验,激发学生的学习热情。在巩固解分式方程的基础上发展学生的归纳能力、张扬学生的个性。使教师真正成为学生学习的促进者。

(3)议一议

在解方程1-x/x-2 = -1/x-2 - 2时,小亮的解法如下:

方程两边都乘以X -2,得

1 - X = -1 -2(X -2)

解这个方程,得

X = 2

你认为X = 2是原方程的根吗?与同伴交流。

教师小结:

在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根

验根的方法有:代入原方程检验法和代入最简公分母检验法。 (1)代入原方程检验,看方程左,右两边的值是否相等,如果值相等,则未知数的值是原方程的解,否则就是原方程的增根。 (2)代入最简公分母检验时,看最简公分母的值是否为零,若值为零,则未知数的值是原方程的增根,否则就是原方程的根。

前一种方法虽然计算量大,但能检查解方程的过程中有无计算错误,后一种方法,虽然计算简单,但不能检查解方程的过程中有无计算错误,所以在使用后一种检验方法时,应以解方程的过程没有错误为前提。

想一想:解分式方程一般需要经过哪几个步骤?由学生回答。

(4)教师归纳小结:

解分式方程的步骤:

1 .在方程的两边都乘以最简公分母,约去分母,化为整式方程

2.解这个整式方程

3.把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。

(5)轻松完成:课堂练习:29页1练习

(6)归纳总结、整理反思

学生自己总结本节课的收获。教师引导学生不但总结知识上的收获,也要总结合作交流上,反思整堂课的学习体验。

设计目的:引导学生从多角度对本节课归纳总结,感悟知识上的点滴收获,体验合作交流的快乐,反思自己。

(7)课后作业:32页习题16.3的1大题的8个小题

教学设计说明:

整个教学活动,从学生的实际出发,引导学生通过探索、交流等手段,获得知识,形成技能,发展思维。在教学活动中,我积极地充当教学活动的组织者、引导者、合作者。让学生产生一种渴望学习的冲动,自愿地全身心地投入学习过程,自主学习、自悟学习、自得学习,让学生在言词实践活动中真正"动"起来。变"听"数学为"做"数学。使学生的个性在课堂中得到张扬、能力得到发展。最终实现以下理念追求:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

2023初中数学说课稿【篇3】

各位老师:

早上好

今天我说课的内容是《相似三角形的判定一》,下面我将从以下几个方面进行阐述。

一、说教材

内容选自华师大版九年级上册第二十四章第3节,是属于空间与图形领域的知识。在这之前,学生学习了全等三角形的相关知识,相似三角形是全等三角形的拓广和发展,而相似三角形的判定是相似三角形的主要内容之一,相似三角形的判定是进一步对相似三角形的本质和定义的全面研究,也是相似三角形性质的研究基础,同时还是研究圆中比例线段和三角函数的重要工具,可见相似三角形的判定占据着重要的地位。新的教学理念要求学生掌握的事思维方法,而不是仅仅记住结论,所以本节课的重点是对判定定理一的探索和理解判定定理一并学会应用,而寻找判定定理一的条件证是难点。基于以上对教材的认识,考虑到学生已有的认知结构和心理特征,我设定了以下教学目标。

二、说目标

1、知识与技能目标:

(1).掌握两个三角形相似的方法——有两个角分别对应相等的两个三角形相似。

(2).会用这种方法判断两个三角形相似。

2、过程与方法目标:

(1)、通过探索相似三角形判定定理(一)的过程,培养学生的动手操作能力,观察、分析、猜想和归纳能力,渗透类比、转化的数学思想方法.

(2)、利用相似三角形的判定定理(一)进行有关判断及计算,训练学生的灵活运用能力,提高表达能力和逻辑推理能力.

3、情感与态度目标:

(1)、通过实物演示和多媒体教学手段,把抽象问题直观化,激发学生学习的求知欲,感悟数学知识的奇妙无穷.

(2)、通过主动探究、合作交流,在学习活动中体验获得成功的喜悦.

三、学情分析

经过两年的几何学习,学生对几何图形的观察,几何图形的分析能力有一定的基础。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论合作交流,能够形成解决问题的思路。现在的学生已经厌倦教师单独的说教方式,希望教师创设便于他们进行观察的几何环境,给他们自己探索、发表自己的见解和表现自己的才华的机会;更希望教师满足他们的创造愿望。

四、说教法

针对初三学生的年龄特点和心理特征,以及他们的知识水平,根据教学目标,本节课采用探究发现式教学法和参与式教学法为主,利用多媒体引导学生始终参与到学习活动的全过程中,处于主动学习的状态。通过实验探索、猜想验证、归纳总结,学习知识,培养能力。同时根据学生的不同层次,为了让每个学生得到发展,教学中还辅之以多种教学方法。

五、学法指导

为了充分体现《新课标》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验。这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程。在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想。

六、教学过程

根据《新课标》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课的教学过程我是这样设计的:

1、复习三角形的定义及利用相似三角形的定义判定两个三角形相似。

2、新课引入的好坏在某种程度上关系到课堂教学的成败,本节课选择以旧孕新为切入点,创设问题情境,引入新课:

提出问题:按定义来来判定两个三角形相似需要三个角分别对应相等,三条边分别对应成比例,需要太多的条件,那么是否存在判定两个三角形相似的简便方法呢?(回忆一下:全等三角形的定义是什么?全等三角形有哪些判定方法?判定三角形相似是否有类似的方法呢?)

猜想:根据三角形的稳定性判定两个三角形相似应该可以适当的减少一些条件。

这一节课我们先从“角”入手来研究一下用尽可能少的条件判定两个三角形相似。

探究活动:

情景1、现有一块三角形玻璃ABC,不小心打碎了,但是找到了一个角∠A=40°(如图)。利用这个角能否知道原三角形的形状? (即:有一个角对应相等的两个三角形相似吗?) 利用几何画板让学生更清楚地发现:有一个角相等的两个三角形不一定相似。(条件太少)

情境2:(在情景1的基础上)于是老师在破碎的玻璃堆中详细寻找,又找到了另一个角∠B=80°.现在利用这两个角能否知道原三角形的形状?(有两个角对应相等的两个三角三角形相似吗?)

在卡纸上画一个三角形,使它的两个内角分别为40°和80°,然后再把它剪下来,跟其他同学比较一下有什么发现?同桌的两个先比较 ,再与小组的其他人比较。

学生动手操作,教师巡回指导,启发点拨。

学生经过画一画、剪一剪、量一量、算一算、拼一拼,在小组合作基础上,讨论交流,可能得出下面结论:

①通过观察三角形的`形状好像一样。

②两个三角形三个角都对应相等(根据三角形内角和180°)。

③通过度量后计算,得到三边对应成比例(测量时误差较大,教师可以动手用几何画板现场操作比较准确的比值)。

由相似三角形的定义可以发现:有两个角对应相等的两个三角形相似。

于是我们得到识别两个三角形相似的一种较为简便的方法(判定一):

如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说:两角对应相等,两三角形相似。

(说明:这个定理作为判断三角形相似,是比较常用的方法,以后经常要用到;关键是如何找到两个角对应相等)

例题:

1.如图两个直角三角形△ABC和△A′B′C′中,

∠C=∠C′=90°,∠A=∠A′,

证明:△ABC∽△A′B′C′

2、如图,△ABC中,DE∥BC,

(1)证明:△ADE∽△ABC。

(2)若EF∥AB,证明:△ADE∽△EFC。

(思考P47想一想,若点D恰好是AB的中点,那么点E是AC的中点吗?DE和BC又有什么关系呢?)

3.在△ABC与△A′B′C′中,∠A=∠A′=50°,∠B=70°,当∠B′= ______°时,这两个三角形相似。

三、练习

1.如图,AB∥CD,AC交BD于点E,证明:△CDE∽△ABE。

2.图中DG∥EH∥FI∥BC,找出图中所有的相似三角形.

3.开放性的题目:

如图△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC会相似,你怎样画这条直线,并说明理由,和你的同伴交流作法是否一样?(__设计意图:让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生。)

四、小结

1、提问:“通过这节课的学习有什么收获?”

让学生同桌间畅谈自己的学习感受和体会,并请个别学生发言。

(设计意图:让学生自己小结,活跃了课堂气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。)

2、用定理“两角对应相等,两三角形相似”时,要注意图形中的公共角、对顶角、直角、两直线平行时的同位角、内错角等等。

(设计意图:让学生能发现图形中的隐含条件,会从已知条件得到相似的条件——角相等,从而形成解题经验)

2023初中数学说课稿【篇4】

一、教材分析:

《向日葵》是法国伟大的画家凡高的作品。在这幅作品中,画家像闪烁着熊熊的火焰,满怀炽热的激情令运动感的和仿佛旋转不停的笔触是那样粗厚有力,色彩的对比也是单纯强烈的。然而,在这种粗厚和单纯中却又充满了智慧和灵气。观者在观看此画时,无不为那激动人心的画面效果而感应,心灵为之震颤,激情也喷薄而出,无不跃跃欲试,共同融入到凡高丰富的主观感情中去。总之,凡高笔下的向日葵不仅仅是植物,而是带有原始冲动和热情的生命体。

在《向日葵》这幅作品中,值得幼儿欣赏和学习的是:画面中鲜明亮丽的色彩和极富特色的线条,感受画面传达出来的强烈、炙热的感情。然而对于城市的大班幼儿来说,孩子缺乏对“向日葵”这种植物的真实的感知,孩子不知道向日葵这种植物的外形、色彩、特征以及它的象征。而这些恰恰正是欣赏《向日葵》这幅作品的经验基础。新《纲要》强调:“幼儿的学习要来源于幼儿的生活,以生活为基础,建立在生活之上。”缺乏生活经验的学习,对于幼儿来说是空洞乏味的,美术欣赏教学也是如此。因此在欣赏“向日葵”这幅作品之前,我认为幼儿应该丰富的经验可以包括:色彩、线条、构图等美术欣赏要素方面的经验,这一点大班幼儿已逐步积累;另外教师要帮助幼儿认识“向日葵”这种植物,帮助幼儿建构有关向日葵的知识经验。那么我相信在幼儿拥有了如此丰厚的经验之后,他们的欣赏活动会更加生动独特。

观察认识:向日葵

欣赏凡高的其他作品

基于两种经验的积累,我们可以围绕“向日葵”的欣赏活动构建这样一个主题:

美术欣赏活动:向日葵

实地参观:向日葵园地

认识凡高

生活经验

美术经验

种植向日葵

这个主题中包括:实地参观活动引导幼儿通过实地实物的参观、认识,建立对向日葵的初步感受和认识。然后认识向日葵的色彩、外形、特征及作用和象征意义,帮助幼儿建立对向日葵的完整认识。还有一个种植

说教材:

教材中截取近似值有积的近似值和商的近似值,一般是采取“四舍五入”法截取,前面已学过积的近似值截取,对商的近似值截取,有一个初步的了解,在教学时,通过结合实例教学,要求学生明确截取商的近似值的实际意义(当小数除法有时碰到永远除不尽或有时虽然除尽,但实际上不需要那么多的小数位数,这就需要取商的近似值),初步学会在小数除法中用“四舍五入”法截取近似值。进一步体验学习数学的目的,能够把学到的知识应用于生活实践。

二、说学生的认识

学生用“四舍五入”法截取近似值已基本掌握,也已学习了积的近似值的截取,对商的`近似值的截取也能略知一二,但在实际操作中会出现很多的问题。如:把得数保留两位小数,除到百分位,就看百分位上的数直接截取,应看千位上的数是用“四舍法”或“五入法“再来截取,尤其在解决实际问题时,就感到更加困难了,如:有一堆煤共有100吨,用一辆载重3吨的汽车来运,几次能运完?学生计算得100÷3=33次……1吨,往往是根据已学的知识用“四舍法”把余数1吨直接舍去,直观地取整数33次,这样出现了这堆煤还留有一部分,学生这种直观地思考忽略了没有从实际情况出发去考虑。

三、说指导学生学习

根据教材的内容,学生的认知基础、年龄特点,结合学生的生活实际,精心设计指导学生学习的过程,揭露认知上的矛盾。

1、简单回顾四舍五入法截取近似值,设计让学生求6.8496保留一位小数()两位小数()三位小数()。

设计的这个数字既有四舍,也有五入,还有保留三位“五入”后的数字变化,可以说一题中涵概了许多知识分量。

2、生活实例引入,在探索中求知:

(1)例1我们五(一)班期中考试,全班总分是5089分,请你算一算他们班的平均分有多少分?

不告诉学生人数,让学生自己搜集信息的能力得到了培养,他们当然能够计算这题的平均分:5089÷55

尝试计算后,学生发现此题不能除尽,得5089÷55=92.52727……(分)

此时教师归纳:在日常生活中,当我们遇到小数除法不能除尽时,我们按实际情况保留一定的小数位数,取它的近似值,应是多少分?(五入法92.5分)。

整个过程是让学生自己充分思考、判断、推理,由实际生活知识引入到所要学的内容,并在从中悟出其中的道理。

2023初中数学说课稿【篇5】

各位评委:

早上好

今天我说课的题目是,这节课所选用的教材为北师大版义务教育课程标准八年级教科书。

一、教材分析

1、教材的地位和作用

本节教材是初中数学____年级册的内容,是初中数学的重要内容之一。一方面,这是在学习了____的基础上,对____的进一步深入和拓展;另一方面,又为学习-__X等

知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。

2、学情分析

学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

3、教学重难点

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

难点确定为:

二、教学目标分析

根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

1.知识与技能目标:

2.过程与方法目标:

3.情感态度与价值目标:

三、教学方法分析

本节课我将采用启发式、讨论式结合的教学方法,以问题的`提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

四、教学过程分析

为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习就知,温故知新

设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

(3)发现问题,探求新知

设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

(4)分析思考,加深理解

设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。

(5)强化训练,巩固双基

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(6)小结归纳,拓展深化

小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.

(7)当堂检测对比反馈

(8)布置作业,提高升华

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上是我对本节课的见解,不足之处敬请各位评委谅解!

221381
领取福利

微信扫码领取福利

微信扫码分享