欢迎访问政务文库!

高中数学说课稿一等奖

小秘书 分享 时间: 加入收藏 我要投稿 点赞

说课稿不仅是给听课人员展示自己教学能力的机会,更是教师自我反思和提高的重要环节。这里给大家分享一些关于高中数学说课稿一等奖,供大家参考学习。

高中数学说课稿一等奖篇1

一、教学目标

1.把握菱形的判定.

2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

3.通过教具的演示培养学生的学习爱好.

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

二、教法设计

观察分析讨论相结合的方法

三、重点·难点·疑点及解决办法

1.教学重点:菱形的判定方法.

2.教学难点:菱形判定方法的综合应用.

四、课时安排

1课时

五、教具学具预备

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

六、师生互动活动设计

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

七、教学步骤

复习提问

1.叙述菱形的定义与性质.

2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.

引入新课

师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

生答:定义法.

此外还有别的两种判定方法,下面就来学习这两种方法.

讲解新课

菱形判定定理1:四边都相等的四边形是菱形.

菱形判定定理2:对角钱互相垂直的'平行四边形是菱形.图1

分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.

分析判定2:

师问:本定理有几个条件?

生答:两个.

师问:哪两个?

生答:(1)是平行四边形(2)两条对角线互相垂直.

师问:再需要什么条件可证该平行四边形是菱形?

生答:再证两邻边相等.

(由学生口述证实)

证实时让学生注重线段垂直平分线在这里的应用,

师问:对角线互相垂直的四边形是菱形吗?为什么?

可画出图,显然对角线,但都不是菱形.

菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.

例4已知:的对角钱的垂直平分线与边、分别交于、,如图.

求证:四边形是菱形(按教材讲解).

总结、扩展

1.小结:

(1)归纳判定菱形的四种常用方法.

(2)说明矩形、菱形之间的区别与联系.

2.思考题:已知:如图4△中,,平分,,,交于.

求证:四边形为菱形.

八、布置作业

高中数学说课稿一等奖篇2

教学目标

A、知识目标:

掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:

(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

C、情感目标:(数学文化价值)

(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

(2)通过公式的运用,树立学生"大众教学"的思想意识。

(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

教学重点:等差数列前n项和的'公式。

教学难点:等差数列前n项和的公式的灵活运用。

教学方法:启发、讨论、引导式。

教具:现代教育多媒体技术。

教学过程

一、创设情景,导入新课。

师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。

例1,计算:1+2+3+4+5+6+7+8+9+10.

这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。

生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成S=10+9+8+7+6+5+4+3+2+1。

上面两式相加得2S=11+10+......+11=10×11=110

10个

所以我们得到S=55,

即1+2+3+4+5+6+7+8+9+10=55

师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。

理由是:1+100=2+99=3+98=......=50+51=101,有50个101,所以1+2+3+......+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?

生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq.

二、教授新课(尝试推导)

师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

生4:Sn=a1+a2+......an-1+an也可写成

Sn=an+an-1+......a2+a1

两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)

n个

=n(a1+an)

所以Sn=

#FormatImgID_0#

(I)

师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得

Sn=na1+

#FormatImgID_1#

d(II)上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n-1)d,Sn=

#FormatImgID_2#

=na1+

#FormatImgID_3#

d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用,

三、公式的应用(通过实例演练,形成技能)。

1、直接代公式(让学生迅速熟悉公式,即用基本量观点认识公式)例2、计算:

(1)1+2+3+......+n

(2)1+3+5+......+(2n-1)

(3)2+4+6+......+2n

(4)1-2+3-4+5-6+......+(2n-1)-2n

请同学们先完成(1)-(3),并请一位同学回答。

生5:直接利用等差数列求和公式(I),得

(1)1+2+3+......+n=

#FormatImgID_4#

(2)1+3+5+......+(2n-1)=

#FormatImgID_5#

(3)2+4+6+......+2n=

#FormatImgID_6#

=n(n+1)

师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。

生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以

原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)

=n2-n(n+1)=-n

生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:

原式=-1-1-......-1=-n

n个

师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。

例3、(1)数列{an}是公差d=-2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

又∵d=-2,∴a1=6

∴S12=12a1+66×(-2)=-60

生9:(2)由a1+a2+a3=12,a1+d=4

a8+a9+a10=75,a1+8d=25

解得a1=1,d=3∴S10=10a1+

#FormatImgID_7#

=145

师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。

师:(继续引导学生,将第(2)小题改编)

①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。

2、用整体观点认识Sn公式。

例4,在等差数列{an},(1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)

师:来看第(1)小题,写出的计算公式S16=

#FormatImgID_8#

=8(a1+a6)与已知相比较,你发现了什么?

生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。

师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。

最后请大家课外思考Sn公式(1)的逆命题:

已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=

#FormatImgID_9#

。数列{an}是否为等差数列,并说明理由。

四、小结与作业。

师:接下来请同学们一起来小结本节课所讲的内容。

生11:1、用倒序相加法推导等差数列前n项和公式。

2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。

生12:1、运用Sn公式要注意此等差数列的项数n的值。

2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。

3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。

师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。

高中数学说课稿一等奖篇3

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

(二)教学内容

本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的'思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

二、教学目标分析

根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

三、重难点分析

一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

四、教法与学法分析

(一)学法指导

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

(二)教法分析

本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

五、课堂设计

本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

(一)创设情景,引出“三个一次”的关系

本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“>”则变成一元二次不等式x2-x-6>0让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

为此,我设计了以下几个问题:

1、请同学们解以下方程和不等式:

①2x-7=0;②2x-7>0;③2x-7<0

学生回答,我板书

高中数学说课稿一等奖篇4

各位老师:

今天我说课的题目是《条件语句》,内容选自于新课程人教A版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:

一、教材分析

1.教材所处的地位和作用

在此之前,学生已学习了算法的概念、程序框图与算法的基本逻辑结构、输入语句、输出语句和赋值语句,这为过渡到本节的学习起着铺垫作用。这一节课主要的内容为条件语句表示方法、结构以及用法。条件语句与程序图中的条件结构相对应,它是五种基本算法语句中的一种,。通过本节课的学习,学生将更加了解算法语句,并能用更全面的眼光看待前面学过的语句,并为以后的学习作好必要的准备。本节课对学生算法语言能力、有条理的思考与清晰地表达的能力,逻辑思维能力的综合提升具有重要作用。

2.教学的重点和难点

重点:条件语句的表示方法、结构和用法;用条件语句表示算法。

难点:理解条件语句的表示方法、结构和用法。

二、教学目标分析

1.知识与技能目标:

⑴正确理解条件语句的概念,并掌握其结构。

⑵会应用条件语句编写程序。

2.过程与方法目标:

⑴通过实例,发展对解决具体问题的过程与步骤进行分析的能力。

⑵通过模仿,操作、探索、经历设计算法、设计框图、编写程序以解决具体问题的过程,发展应用算法的能力。

⑶在解决具体问题的过程中学习条件语句,感受算法的重要意义。

3.情感,态度和价值观目标

⑴能通过具体实例,感受和体会算法思想在解决具体问题中的意义,进一步体会算法思想的重要性,体验算法的有效性,增进对数学的了解,形成良好的数学学习情感,增强学习数学的乐趣。

⑵通过感受和认识现代信息技术在解决数学问题中的重要作用和威力,形成自觉地将数学理论和现代信息技术结合的思想。

⑶在编写程序解决问题的过程中,逐步养成扎实严谨的科学态度。

三、教学方法与手段分析

1.教学方法:根据本节内容逻辑性强,学生不易理解的特点,本节教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这种方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

2.教学手段:运用计算机、图形计算器辅助教学

四、教学过程分析

1.创设情境(约4分钟)

首先,我要求学生们编写程序,输入一元二次方程

的系数,输出它的实数根。这样可以把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,因为要解决这一问题,根据我们之前所学的三种算法语句是无法解决的,这样就引出今天我们所要学习的内容。

2.探究新知(约8分钟)

为了引入概念,我首先给出了一个基本的应用条件语句能够解决的例题:

例1 编写一个程序,求实数x的绝对值。

整个过程由师生共同分析完成。老师要引导学生分析、研究例题中的两个程序,既要让学生们看到已知的三种语句,更要注意到未知的语句,即条件语句。总结上述例题的程序可得出条件语句的两种一般格式,接下来由师生共同对这两种格式进行研究.

3.知识应用(约15分钟)

此环节有两个例题

例2 编写程序,写出输入两个数a和b,将较大的数打印出来

例3 编写程序,使任意输入的3个整数按从大到小的顺序输出.

先把解决问题的思路用程序框图表示出来,然后再根据程序框图给出的算法步骤,逐步把算法用对应的程序语句表达出来。(程序框图先由学生讨论,再统一,然后利用图形计算器演示,学生会惊喜的发现:自己也是个编程高手了!这样可以激发学生们的学习兴趣)

4.练习巩固(约4分钟)

课本第30页第3题

练习可巩固学生对知识的理解,也可在练习中发现问题,使问题得到及时的解决。

5.课堂小结(约5分钟)

条件语句的步骤、结构及功能.

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用

6.布置作业

课本练习第3、4题

[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。

7.板书设计

1.2.2条件语句

1、条件语句的一般格式

(1)IF-THEN-ELSE语句

格式: 框图:

(2)IF-THEN语句

格式: 框图:

2、小结

(1)

(2)

(3)

2、例1 引例

例2 例4

例3

高中数学说课稿一等奖篇5

一、说设计理念

《数学课程标准》指出要让学生感受生活中处处有数学,用数学知识解决生活中的实际问题。

基于这一理念,我在教学过程中力求联系学生生活实际和已有的知识经验,从学生感兴趣的素材,设计新颖的导入与例题教学,给数学课富予新的生命力。课堂中力求构建一种自主探究、和谐合作的教学氛围,让学生经历知识的探究过程,培养学生感受生活中的数学和用数学知识解决生活问题的能力,体验数学的应用价值。

二、教材分析:

(一)教材的地位和作用

有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。考虑到扇形统计图在日常生活中的广泛应用,《标准》把它作为必学内容安排在本单元。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到扇形统计图的实用价值。

(二)教学目标

1、联系生活情境了解扇形统计图的特点和作用

2、能读懂扇形统计图,从中获取有效的信息。

3、让学生在观察、比较、讨论和交流中体会扇形统计图反映的是整体和部分的关系。

(三)教学重点:

1、能读懂扇形统计图,理解扇形统计图的特点和作用,并能从中获取有效信息。

2、认识折线统计图,了解折线统计图的特点。

(四)教学难点:

1、能从扇形统计图中获得有用信息,并做出合理推断。

2、能根据统计图和数据进行数据变化趋势的分析。

二、学情分析

本单元的教学是在学生已有统计经验的基础上,学习新知的。六年级的学生已经学习了条形统计图和折线统计图,知道他们的特点,并具有一定的概括、分析能力,在此基础上,通过新旧知识对比,自然生成新知识点。

三、设计理念和教法分析

1、本堂课力争做到由“关注知识”转向“关注学生”,由“传授知识”转向“引导探索”,“教师是组织者、领导者。”将课堂设置问题给学生,让学生自己获取信息、分析信息,自主探索、合作交流,参与知识的构建。

2、运用探究法。探究学习的内容以问题的形式出现在教师的引导下,学生自主探究,让学生在课堂上多活动、多思考,自主构建知识体系。引导学生获取信息并合作交流。

四、说学法

《数学课程标准》指出有效的数学学习不能单纯的依赖模仿和记忆,动手操作、自主探索与合作交流是学生学习数学的重要方式。教学时,我通过学生感兴趣的话题引入,引导学生关注身边的数学,使学生体会到观察、概括、想象、迁移等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

五、说教学程序

本课分成创设情境,感知特点——分析数据,理解特征——尝试制图,看图分析——实践应用,全课总结四环节。

六、说教学过程

(一)复习引新

1、复习旧知

提问:我们学习过哪些统计方法?其中条形统计图和折线统计图各有什么特点?

2、引入新课

(二)自主探索,学习新知

新知识教学分二步教学:第一步整体感知,看懂统计图,理解特征,这是本节课的重点。在教学中,以知识迁移的方式建立新旧知识之间的联系,放手让学生独立思考,互相合作,进一步了解统计图的特征。

第二步实践应用环节。在教学中,精心地选取了大量的生活素材,使统计知识与生活建立紧密的联系。根据统计图回答问题,是让学生运用到刚才学习到的知识来解决生活中的一些问题,并巩固刚才所学的知识,为学生自己发现问题、提出问题及自己解决问题提供了较大的空间。同时,让学生感悟由于数据变化带来的启示,并能合理地进行推理与判断

三、课堂总结

四、布置作业。

五、板书设计

高中数学说课稿一等奖篇6

各位评委,老师们:

大家好!

很高兴参加这次说课活动。这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导。希望各位评委和老师们对我的说课内容提出宝贵意见。

我说课的内容是《平面向量》的教学,所用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本—必修)《数学》第一册下,教学内容为第96页至98页第五章第一节。本校是浙江省一级重点中学,学生基础相对较好。我在进行教学设计时,也充分考虑到了这一点。

下面我从教材分析,教学目标的确定,教学方法的选择和教学过程的设计四个方面来汇报我对这节课的教学设想。

一说教材

(1)地位和作用

向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系。向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用。

平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习。为学习向量的知识体系奠定了知识和方法基础。

(2)教学结构的调整

课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别。然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念。为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程。在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成。

(3)重点,难点,关键

由于本节课是本章内容的第一节课,是学生学习本章的基础。为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向。所以向量,相等向量的概念,向量的几何表示是这节课的重点。本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点。而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解。

二说教学目标的确定

根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:

(1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量。会根据图形判定向量是否平行,共线,相等。

(2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

(3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

三说教学方法的选择

Ⅰ教学方法

本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:

(1)由教材的特点确立类比思维为教学的主线。

从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似。因此在教学中运用类比作为思维的主线进行教学。让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程。

(2)由学生的特点确立自主探索式的学习方法

通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情。考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究。将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用。

Ⅱ教学手段

本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学。多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破。

四教学过程的设计

Ⅰ知识引入阶段———提出学习课题,明确学习目标

(1)创设情境——引入概念

数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等。这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣。

(2)观察归纳——形成概念

由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度。明确知道了有向线段的起点,方向和长度,它的终点就唯一确定。再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。

(3)讨论研究——深化概念

在得到概念后进行归纳,深化,之后向学生提出以下三个问题:

①向量的要素是什么?

②向量之间能否比较大小?

③向量与数量的区别是什么?

同时指出这就是本节课我们要研究和学习的主题。

Ⅱ知识探索阶段———探索平面向量的平行向量。相等向量等概念

(1)总结反思——提高认识

方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件。

(2)即时训练—巩固新知

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

[练习1]判断下列命题是否正确,若不正确,请简述理由.

①向量与是共线向量,则A、B、C、D四点必在一直线上;

②单位向量都相等;

③任一向量与它的相反向量不相等;

④四边形ABCD是平行四边形的充要条件是=;

⑤模为0是一个向量方向不确定的充要条件;

⑥共线的向量,若起点不同,则终点一定不同.

[练习2]下列命题正确的是( )

A.a与b共线,b与c共线,则a与c也共线

B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点

C.向量a与b不共线,则a与b都是非零向量

D.有相同起点的两个非零向量不平行

Ⅲ知识应用阶段————共线向量,相等向量等概念的初步应用

在本阶段的教学中,我采用的是课本上一道典型的例题:在一个复杂图形中观察,辨认平行,相等的有向线段。选用本题的目的是让学生进行独立思考,自主探究,交流讨论等探索活动,加深对概念的理解和对难点的突破。

例如图所示,设O是正六边形ABCDEF的中心,分别写出图中与向量相等的向量。(同时思考:向量与相等么?向量与相等么?)

具体教学安排如下:

(1)分析解决问题

先引导学生分析解决问题。包括向量的概念,:向量相等的概念。抓住相等向量概念的实质:两个向量只有当它们的模相等,同时方向又相同时,才能称它们相等。进而进行正确的辨认,直至最终解决问题。

(2)归纳解题方法

主要引导学生归纳以下两个问题:①零向量的方向是任意的,它只与零向量相等;②两个向量只要它们的模相等,方向相同就是相等向量。一个向量只要不改变它的大小和方向,是可以任意平行移动的,既向量是自由的。

Ⅳ学习,小结阶段———归纳知识方法,布置课后作业

本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识,技能,方法的一般规律,为后续学习打好基础。

具体的教学安排如下:

(1)知识,方法小结在知识层面上我首先引导学生回顾本节课的主要内容,提醒学生要抓住向量的本质:大小与方向,对它们进行类比,加深对每个概念的理解。

在方法层面上我将带领学生回顾探索过程中用到的思维方法和数学方法如:

类比,数形结合,等价转化等进行强调。

(2)布置课后作业

阅读教材96至97页内容,整理课堂笔记,习题5.1第1,2,3题

221381
领取福利

微信扫码领取福利

微信扫码分享