还在为没有系统的七年级数学知识点而发愁吗?在日复一日的学习中,相信大家一定都接触过知识点吧!知识点在教育实践中,是指对某一个知识的泛称。下面是小编给大家整理的2023年七年级数学基础知识点总结范文,仅供参考希望能帮助到大家。
2023年七年级数学基础知识点总结范文篇1
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:
1、正数(positionnumber):大于0的数叫做正数。
2、负数(negationnumber):在正数前面加上负号-的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:
(1)在直线上任取一个点表示数0,这个点叫做原点(origin);
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度。
6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.
(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a.
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)
9、有理数减法法则:减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)
10、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.
乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)
乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac
11、倒数
1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的'积等于1.
12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.
13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0.
14、有理数的混合运算顺序
(1)先乘方,再乘除,最后加减的顺序进行;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。
16、近似数(approximatenumber):
17、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。
2023年七年级数学基础知识点总结范文篇2
7.1与三角形有关的线段
7.1.1三角形的边
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。
顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。
三角形两边的和大于第三边。
7.1.2三角形的高、中线和角平分线
7.1.3三角形的稳定性
三角形具有稳定性。
7.2与三角形有关的角
7.2.1三角形的内角
三角形的内角和等于180。
7.2.2三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角。
7.3多边形及其内角和
7.3.1多边形
在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形。
7.3.2多边形的内角和
n边形的内角和公式:180(n-2)
多边形的外角和等于360。
7.4课题学习镶嵌
2023年七年级数学基础知识点总结范文篇3
本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。在此基础上,认识一些简单的平面图形直线、射线、线段和角。
一、目标与要求
1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。
2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。
3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。
二、知识框架
三、难点
立体图形与平面图形之间的转化是难点;
探索点、线、面、体运动变化后形成的图形是难点;
画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点。
四、知识点、概念总结
1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
2.几何图形的分类:几何图形一般分为立体图形和平面图形。
13.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
锐角:大于0,小于90的角叫做锐角。
直角:等于90的角叫做直角。
钝角:大于90而小于180的角叫做钝角。
平角:等于180的角叫做平角。
优角:大于180小于360叫优角。
劣角:大于0小于180叫做劣角,锐角、直角、钝角都是劣角。
周角:等于360的角叫做周角。
负角:按照顺时针方向旋转而成的角叫做负角。
正角:逆时针旋转的角为正角。
0角:等于零度的角。
余角和补角:两角之和为90则两角互为余角,两角之和为180则两角互为补角。等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!
14.几何图形分类
(1)立体几何图形可以分为以下几类:
第一类:柱体;
包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;
棱柱体积统一等于底面面积乘以高,即V=SH,
第二类:锥体;
包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;
棱锥体积统一为V=SH/3,
第三类:球体;
此分类只包含球一种几何体,
体积公式V=4R3/3,
其他不常用分类:圆台、棱台、球冠等很少接触到。
大多几何体都由这些几何体组成。
(2)平面几何图形如何分类
a.圆形
b.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六
注:正方形既是矩形也是菱形
2023年七年级数学基础知识点总结范文篇4
9.1 平行四边形的性质
1.平行四边形
2.平行四边形的性质,等腰梯形的性质与判定
9.2 平行四边形的判定
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
9.3 菱形
菱形的判定定理:
1.一组邻边相等的平行四边形是菱形(rhombus)。
2.对角线互相垂直的平行四边形是菱形。
9.4 矩形 正方形
矩形的性质:
①矩形的四个角都是直角.
②矩形的对角线相等.
③矩形具有平行四边形的所有性质.
9.5 梯形
一、梯形的定义、性质及判定:
1.定义:只有一组对边平行的四边形叫做梯形.两腰相等的梯形叫做等腰梯形;有一个角是直角的梯形叫做直角梯形.
9.6 多边形的内角和与外角和
【n 边形内角和公式】
n 边形内角和等于 (n-2)×180°.
【n 边形外角和定理】
n 边形的外角和等于 360°.
9.7 平面图形的密铺
1.用形状、大小完全相同的三角形可以密铺.因为三角形的内角和为180°,所以,用6个这样的三角形就可以组合起来镶嵌成一个平面.
9.8 中心对称的图形
圆
1、定义:圆是到定点的距离等于定长的点的集合
2、点与圆的位置关系:
如果⊙O的半径为r,点P到圆心O的距离为d,那么
点P在圆内,则dr;
点P在圆上,则dr;
点P在圆外,则dr;反之亦成立。
2023年七年级数学基础知识点总结范文篇5
1、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?
2、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?
3、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.
4、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?
2023年七年级数学基础知识点总结范文篇6
一、知识梳理
知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。
知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:
注:有限小数和无限循环小数都可看作分数。
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4:绝对值的概念:
(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;
(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
注:任何一个数的绝对值均大于或等于0(即非负数).
知识点5:相反数的概念:
(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;
(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。
知识点6:有理数大小的比较:
有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。
用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。
知识点7:有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
知识点8:有理数加法运算律:
加法交换律:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。
知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。
2023年七年级数学基础知识点总结范文篇7
【知识点一】实数的分类
1、按定义分类: 2.按性质符号分类:
注:0既不是正数也不是负数.
【知识点二】实数的相关概念
1.相反数
(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.
(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.
(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.
2.绝对值 |a|0.
3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .
4.平方根
(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a0)的平方根记作.
(2)一个正数a的正的平方根,叫做a的算术平方根.a(a0)的算术平方根记作 .
5.立方根
如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.
【知识点三】实数与数轴
数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.
【知识点四】实数大小的比较
1.对于数轴上的任意两个点,靠右边的点所表示的数较大.
2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.
3.无理数的比较大小:
【知识点五】实数的运算
1.加法
同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.
2.减法:减去一个数等于加上这个数的相反数.
3.乘法
几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.
4.除法
除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.
5.乘方与开方
(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.
(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.
(3)零指数与负指数
【知识点六】有效数字和科学记数法
1.有效数字:
一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.
2.科学记数法:
把一个数用 (110,n为整数)的形式记数的方法叫科学记数法.
有了上文梳理的人教版数学期中考试知识点汇总(2),相信大家对考试充满了信心,同时预祝大家考试取得好成绩。
2023年七年级数学基础知识点总结范文篇8
1、两组对边平行的四边形是平行四边形。
2、性质:
(1)平行四边形的对边相等且平行;
(2)平行四边形的对角相等,邻角互补;
(3)平行四边形的对角线互相平分。
3、判定:
(1)两组对边分别平行的四边形是平行四边形:
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形:
(5)对角线互相平分的四边形是平行四边形。
4、对称性:平行四边形是中心对称图形。
2023年七年级数学基础知识点总结范文篇9
第一章
1.1 正数与负数
在以前学过的0以外的数前面加上负号“-”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起--一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
相信大家一定仔细阅读了由数学网为大家整理的初一数学下学期期末备考知识点归纳,希望大家在考试中都能取得好成绩。
2023年七年级数学基础知识点总结范文篇10
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11.三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。