在日常过程学习中,相信大家一定都接触过知识点吧!知识点在教育实践中,是指对某一个知识的泛称。还在苦恼没有知识点总结吗?以下是小编整理的人教版初一数学上册知识点,欢迎阅读,希望大家能够喜欢!
人教版初一数学上册知识点
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的分类
3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
快速判定方法:
1)不等边三角形:最小两个边之和大于第三个边,就能组成三角形。
2)等腰三角形:两腰之和大于底,就能组成三角形。
3)等边三角形:肯定能组成。
4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7、高线、中线、角平分线的画法
8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9、三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;推论2三角形的一个外角等于和它不相邻的两个内角和;推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半。
10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角(六选三原则)
11、三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
人教版初一数学上册知识点梳理
有理数的乘方
(1)求相同因数的积的运算叫做乘方。乘方运算的结果叫幂。
一般地,记作,读作:a的n次方,表示n个a相乘;其中,a是底数,n是指数,称为幂。
(2)正数的任何次幂都是正数。
负数的奇数次幂是负数,
负数的偶数次幂是正数。
(3)一个数的平方为它本身,这个数是0和1;
一个数的立方为它本身,这个数是0、1和—1。
初一上册数学知识点
同类项的概念:
所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也叫同类项。
判断几个单项式或项,是否是同类项的两个标准:
①所含字母相同。
②相同字母的次数也相同。
判断同类项时与系数无关,与字母排列的顺序也无关。
合并同类项的概念:
把多项式中的同类项合并成一项叫做合并同类项。
合并同类项的法则:
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
合并同类项步骤:
(1)准确的找出同类项。
(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
(3)写出合并后的结果。
合并同类项时注意:
(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0
(2)不要漏掉不能合并的项。
(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
(4)不是同类项千万不能进行合并。
初一上册数学知识点归纳
三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ—sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ—cosα·sinβ·sinγ—sinα·cosβ·sinγ—sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ—tanα·tanβ·tanγ)/(1—tanα·tanβ—tanβ·tanγ—tanγ·tanα)
初一上册数学知识点总结
(一)多姿多彩的图形
立体图形:棱柱、棱锥、圆柱、圆锥、球等。
1、几何图形
平面图形:三角形、四边形、圆等。
主(正)视图—————————从正面看
2、几何体的三视图 侧(左、右)视图—————从左(右)边看
俯视图———————————————从上面看
(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
3、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
(二)直线、射线、线段
1、基本概念
图形 直线 射线 线段
端点个数 无 一个 两个
表示法 直线a
直线AB(BA) 射线AB 线段a
线段AB(BA)
作法叙述 作直线AB;
作直线a 作射线AB 作线段a;
作线段AB;
连接AB
延长叙述 不能延长 反向延长射线AB 延长线段AB;
反向延长线段BA
2、直线的性质
经过两点有一条直线,并且只有一条直线。
简单地:两点确定一条直线。
3、画一条线段等于已知线段
(1)度量法
(2)用尺规作图法
4、线段的大小比较方法
(1)度量法
(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等
定义:把一条线段平均分成两条相等线段的点。
图形:
A M B
符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM。
6、线段的性质
两点的所有连线中,线段最短。简单地:两点之间,线段最短。
7、两点的距离
连接两点的线段长度叫做两点的距离。
8、点与直线的位置关系
(1)点在直线上
(2)点在直线外。
(三)角
1、角:由公共端点的两条射线所组成的图形叫做角。
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
∠β、锐角、直角、钝角、平角、周角
范围0<∠β<90°、∠β=90°、90°<∠β<180°、∠β=180°、∠β=360°
5、角的比较方法
(1)度量法
(2)叠合法
6、角的和、差、倍、分及其近似值
7、画一个角等于已知角
(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。
(2)借助量角器能画出给定度数的角。
(3)用尺规作图法。
8、角的平线线
定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。
图形:
符号:
9、互余、互补
(1)若∠1+∠2=90°,则∠1与∠2互为余角。其中∠1是∠2的余角,∠2是∠1的余角。
(2)若∠1+∠2=180°,则∠1与∠2互为补角。其中∠1是∠2的补角,∠2是∠1的补角。
(3)余(补)角的性质:等角的补(余)角相等。
10、方向角
(1)正方向
(2)北(南)偏东(西)方向
上一篇:初一上学期数学知识点
下一篇:初一数学知识点上册