欢迎访问政务文库!

8年级上册数学知识点

pix 分享 时间: 加入收藏 我要投稿 点赞

现代技术的发展离不开数学的支持。计算机、通信、航空、汽车等领域都需要数学的支持。所以,我们要学习好数学!以下是小编为大家带来的8年级上册数学知识点(梳理),欢迎参阅呀!

8年级上册数学知识点(梳理)

1全等三角形的对应边、对应角相等

2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

5边边边公理(SSS)有三边对应相等的两个三角形全等

6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

7定理1在角的平分线上的点到这个角的两边的距离相等

8定理2到一个角的两边的距离相同的点,在这个角的平分线上

9角的平分线是到角的两边距离相等的所有点的集合

10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

21推论1等腰三角形顶角的平分线平分底边并且垂直于底边

22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

23推论3等边三角形的各角都相等,并且每一个角都等于60°

24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

25推论1三个角都相等的三角形是等边三角形

26推论2有一个角等于60°的等腰三角形是等边三角形

27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

28直角三角形斜边上的中线等于斜边上的一半

29定理线段垂直平分线上的点和这条线段两个端点的距离相等

30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

一次函数

(1)正比例函数:一般地,形如y=kx(k是常数,k‡0)的函数,叫做正比例函数,其中k叫做比例系数;

(2)正比例函数图像特征:一些过原点的直线;

(3)图像性质:

①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;

(4)求正比例函数的解析式:已知一个非原点即可;

(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)

(6)一次函数:一般地,形如y=kx+b(k、b是常数,k‡0)的函数,叫做一次函数;

(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)

(8)一次函数图像特征:一些直线;

(9)性质:

①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b<0,向下平移)

②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;

④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);

⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);

(10)求一次函数的解析式:即要求k与b的值;

(11)画一次函数的图像:已知两点;

用函数观点看方程(组)与不等式

(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;

(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;

(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;

(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;

四边形的相关概念

1、四边形

在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

2、四边形具有不稳定性

3、四边形的内角和定理及外角和定理

四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n边形的内角和等于(n2)•180°;

多边形的外角和定理:任意多边形的外角和等于360°。

6、设多边形的边数为n,则多边形的对角线共有n(n3)条。从n边形的一个顶点出2

发能引(n-3)条对角线,将n边形分成(n-2)个三角形。

平行四边形

1、平行四边形的定义

两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质

(1)平行四边形的对边平行且相等。

(2)平行四边形相邻的角互补,对角相等

(3)平行四边形的对角线互相平分。

(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段

的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3、平行四边形的判定

(1)定义:两组对边分别平行的四边形是平行四边形

(2)定理1:两组对角分别相等的四边形是平行四边形

(3)定理2:两组对边分别相等的四边形是平行四边形

(4)定理3:对角线互相平分的四边形是平行四边形

(5)定理4:一组对边平行且相等的四边形是平行四边形

4、两条平行线的距离

两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。

5、平行四边形的面积

S平行四边形=底边长×高=ah

北师大版八年级上册数学第一单元知识点

因式分解

1、因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。

2、因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。

3、公因式的确定:系数的公约数,相同因式的低次幂。

注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.

4、因式分解的公式:

(1)平方差公式:a2-b2=(a+b)(a-b);

(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.

5、因式分解的注意事项:

(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;

(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

(3)因式分解的后结果要求分解到每一个因式都不能分解为止;

(4)因式分解的后结果要求每一个因式的首项符号为正;

(5)因式分解的后结果要求加以整理;

(6)因式分解的后结果要求相同因式写成乘方的形式。

6、因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项。

分式

1、分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式。

2、有理式:整式与分式统称有理式;

3、对于分式的两个重要判断:

(1)若分式的分母为零,则分式无意义,反之有意义;

(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义。

4、分式的基本性质与应用:

(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;

(3)繁分式化简时,采用分子分母同乘小分母的小公倍数的方法,比较简单。

5、分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解。

6、简分式:一个分式的分子与分母没有公因式,这个分式叫做简分式;注意:分式计算的后结果要求化为简分式。

提高数学成绩常用方法

1、预习

预期常常由于 “没时间,看不懂,不必要”等等原因被忽略。实际上预习是学习的必要过程,更是提高自学能力的好方法。

2、学会听课

听分析、听思路、听应用,关键内容一字不漏,注意记录。

3、做好错题本

每个会学习的学生都会有错题本。调查发现那些没有错题本,或者是只做不用的同学,学习效果都不好。

4、用好课外书

正确认识网络课程和课外书籍,是副食,是帮助吸收的良药。

5、注重数学思维方法的培养

要注意数学思想和方法的指导,站得高,才能看得远。

学好数学的习惯有哪些

1.勤奋

手勤:多记(课堂笔记、好题、好解法、错题本)、多做(练习)、多总结(知识总结、方法总结)。

眼勤:多看课本、课外书、笔记、错题本。

耳勤:听讲仔细。

嘴勤:多问,有问题及时解决,不留后患。

脑勤:多想,对知识、题目等不但要弄清楚是什么、怎样做,还要多想几个为什么?

其中最重要的是动手和动脑。

2.深入

对所学的知识不但要记住,而且最好弄清楚是怎么来的?解题中怎么使用?对一些好的题目不要满足于会做,还要考虑解法是怎么想出来的?哪种方法更好?

“会”有不同的层次:

知识:知道→理解→记住→会用→推广

解题:会做一道题→会做一类题→灵活运用和创新

3.严谨

数学是最严谨的学科。知识要严谨,解题要严谨。不严谨,遇到题目不是不会做,就是解不完整,得分就不全。

掌握练习方法提高解答数学题的能力

1.端正态度,充分认识到数学练习的重要性.实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现.

2.要有自信心与意志力.数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯.

3.要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答.解答后,还应进行检查.

4.细观察、活运用、寻规律、成技巧.

四、掌握复习方法,提高数学综合能力.

复习是记忆之母,对所学的知识要不断地复习,复习巩固应注意掌握以下方法.

1.合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,无论当天作业有多少,多难,都要巩固复习.

2.采用综合复习方法,即通过找出知识的左右关系和纵横之间的内在联系,从整体上提高,综合复习具体可分“三步走”:首先是统观全局,浏览全部内容,通过唤起回忆,初步形成知识体系印象,其次是加深理解,对所学内容进行综合分析,最后是整理巩固,形成完整的知识体系.

3.突破薄弱环节的复习方法.要多在薄弱环节上下功夫,加强巩固好课本知识,只有突破薄弱环节,才利于从整体上提高数学综合能力.

221381
领取福利

微信扫码领取福利

微信扫码分享