欢迎访问政务文库!

5年级数学知识点

A+ 分享 时间: 加入收藏 我要投稿 点赞

总而言之,掌握数学知识点,不仅能够提高学生的数学成绩,还能够培养学生的数学思维能力和解决问题的能力。以下是小编为大家带来的5年级数学知识点大全,欢迎参阅呀!

5年级数学知识点大全

减法性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。

a-b-c=a-(b+c)

a-b--c=a-c-b

除法性质:从一个数里连续除数两个数,我们可以除以两个除数的积,或者交换两个除数的位置。

a÷b÷c=a÷(b×c)

a÷b÷c=a÷c÷b

去括号:加减(乘除)混合时,括号前是加号(乘号)的,去掉括号后,括号内的符号不变号;括号前是减号(除法)的,去掉括号后,括号内的符号要变号。

a+(b-c)=a+b-c

a-(b-c)=a-b+c

a(b÷c)=ab÷c

a÷(b÷c)=a÷b×c

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法:乘法交换律:a×b=b×a

乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变.

(a×b)×c=a×(b×c)

乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。

(a+b)×c=a×c+b×c

或(a-b)×c=a×c-b×c

1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:

(1)计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

(2)计算小数加减法先把小数点对齐,再把相同数位上的数相加。

(3)计算小数乘法末尾对齐,按整数乘法法则进行计算。

(4)计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数因数末尾对齐。

2、一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

3、求积的近似数:先求出积,再根据需要求近似数。求近似数的方法一般有三种:

⑴四舍五入法(常用);⑵进一法;⑶去尾法。后两种多用于解决实际问题求近似数中。

人教版小学五年级数学知识点总结

一、学习目标:

1.探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释;

2.会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;

3.理解用字母表示数的意义和作用;

4.理解简易方程的意思及其解法;

5.在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。

二、学习难点:

1.能正确进行乘号的简写,略写;小数乘法的计算法则;

2.小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足;

3.除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理;

4.构建初步的空间想象力;

5.用字母表示数的意义和作用;

6.多边形面积的计算。

三、知识点概念总结:

1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

2.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

3.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

4.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

5.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

6.积的近似数:四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。

7.数的互化:

(1)小数化成分数

原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

(2)分数化成小数

用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

(3)化有限小数

一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。

(4)小数化成百分数

只要把小数点向右移动两位,同时在后面添上百分号。

(5)百分数化成小数

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

(6)分数化成百分数

通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(7)百分数化成小数

先把百分数改写成分数,能约分的要约成最简分数。

8.小数的分类:

(1)有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。

(2)无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……

(3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

(4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109……;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。

9.循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。

10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。

11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)

方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

12.方程的解:使方程左右两边相等的未知数的值,叫做方程的解。如果两个方程的解相同,那么这两个方程叫做同解方程。

13.方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

14.解方程:解方程,求方程的解的过程叫做解方程。

15.列方程解应用题的意义:用方程式去解答应用题求得应用题的未知量的方法。

16.列方程解答应用题的步骤:

(1)弄清题意,确定未知数并用x表示;

(2)找出题中的数量之间的相等关系;

(3)列方程,解方程;

(4)检查或验算,写出答案。

17.列方程解应用题的方法:

(1)综合法

先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

(2)分析法

先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

18.列方程解应用题的范围:

小学范围内常用方程解的应用题:

(1)一般应用题;

(2)和倍、差倍问题;

(3)几何形体的周长、面积、体积计算;

(4)分数、百分数应用题;

(5)比和比例应用题。

19.平行四边形的面积公式:

底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=ah

20.三角形面积公式:

S△=1/2__ah(a是三角形的底,h是底所对应的高)

21.梯形面积公式:

(1)梯形的面积公式:(上底+下底)×高÷2.

用字母表示:(a+b)×h÷2

(2)另一计算公式:中位线×高

用字母表示:l·h

(3)对角线互相垂直的梯形:对角线×对角线÷2.

扩展资料:

1.小数分类

(1)纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。

(2)带小数:整数部分不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。

(3)纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.111……0.5656……

(4)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。3.1222……0.03333……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。

2.循环节的表示方法:

小数化分数分成两类。

一类:纯循环小数化分数,循环节做分子;连写几个九作分母,循环节有几位写几个九。

另一类:混循环小数化分数(问题就是这类的),小数部分减去不循环的数字作分子;连写几个9再紧接着连写几个0作分母,循环节是几个数就写几个9,不循环(小数部分)的数是几个就写几个0.

3.平行四边形的面积:

平行四边形的面积等于两组邻边的积乘以夹角的正弦值;

4.三角形的面积

(1)S△=1/2__ah(a是三角形的底,h是底所对应的高)

(2)S△=1/2acsinB=1/2bcsinA=1/2absinC(三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)

(3)S△=abc/(4R)(R是外接圆半径)

(4)S△=[(a+b+c)r]/2(r是内切圆半径)

(5)S△=c2sinAsinB/2sin(A+B)

如何提高数学课堂学习效率?

课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到;

手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;

耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结.另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;

口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;

眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;

心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极.关键是理解并能融汇贯通,灵活使用.对于老师讲的新概念,应抓住关键字眼,变换角度去理解.

学生如何让预习变得更高效

一、读一读。预习时要认真,要逐字逐词逐句的阅读,用笔把重点画出来,重点加以理解.遇到自己解决不了的问题,作出记号,教师讲解时作为听课的重点.

二、想一想。对预习中感到困难的问题要先思考.如果是基础问题,可以用以前的知识看看能不能弄通.如果是理解上的问题,可以记下来课上认真听讲,通过积极思考去解决.这样有利于提高对知识的理解,养成学习数学的良好思维习惯。

三、说一说。预习时可能感到认识模糊,可以与父母或同学进行讨论,在同学们的合作交流与探讨中找到正确的答案.这样即增加了学生探求新课的兴趣,有可以弄懂数学知识的实际用法,对知识有个准确的概念。

四、写一写。写一写在课前预习中也是很有必要的,预习时要适当做学习笔记,主要包括看书时的初步体会和心得,读明白了的问题的理解,对疑难问题的记录和思考等。

五、做一做。预习应用题,可以用画线段的方法帮助理解数量间的关系,弄清已知条件和所求问题,找到解题的思路.对于一些有关图形方面的问题,可以在预习中动手操作,剪剪拼拼,增加感性认识。

六、补一补。数学课新旧知识间往往存在紧密的联系,预习时如发现学习过的要领有不清楚的地方,一定要在预习时弄明白,并对旧的知识加以巩固和记忆,同时为学习新的知识打下坚实的基础。

七、练一练。往往每课时的例题都是很典型的,预习时应把例题都做一遍,加深领悟的能力.如果做题时出现错误,要想想错在哪,为什么错,怎么改错.如果仍是找不到错误的根源,可在听课时重点听,逐步领会。

在课堂上积极回答问题有什么收获

首先,认真听讲、主动回答,能让自己变得更加自信

课堂上,只有认真听讲才能将老师所讲的知识点进行消化,才能夯实自己的基础,才能提高自己的成绩;主动回答问题不仅是学习积极主动的表现,也是自信的体现。长期的认真听讲、会让成绩变好,积极主动回答问题,能给老师留下非常好的印象,这两点就会使我们变得更加的自信,自信心是支撑我们前行的动力。

第二,条理清晰、声音洪亮,可以锻炼自己的沟通能力

班级里,总有一类同学,老师叫起来回答问题,除了脸红脖子粗,回答问题也是磕磕巴巴、思绪混乱。如果有这类情形的同学,不妨用更加主动的态度来面对,首先一定要积极回答问题,为了避免思绪混乱,回答语言不流畅,可以提前写一个小纸条,里面用几个关键字概括,进过练习,以后回答就不会再用到小纸条了,这样就可以通过积极回答问题,锻炼我们的语言组织能力和沟通能力了。

第三,不怕出错、正视结果,可以锻炼心理承受能力

老师提问时很多学生不愿意举手无非有两个原因:一个是怕出错被同学笑话,另一个就是被老师批评。提到这个问题我们可以换个角度来思考,当别人回答问题出现错误的时候,你会一直笑话他吗?当其他同学回答错误时,老师批评的次数多吗?你还记得小学时候,你回答了什么问题吗?你会记得其他同学回答了什么问题吗?因此,怕笑话、怕出错、怕挨批这些都是自己的想法,很多时候别人根本就不会在意,还有就是随着时间的推移,甚至连你自己都会忘记曾经“出糗”的经历,不怕出错、勇于承担是心理承受力强大的一种表现,敢于发言、敢于质疑才是展现自己最好的方式。

221381
领取福利

微信扫码领取福利

微信扫码分享