欢迎访问政务文库!

新人教版八年级下册勾股定理教案

老牛 分享 时间: 加入收藏 我要投稿 点赞

会用勾股定理及直角三角形的判定条件解决实际问题,逐步培养“数形结合”和“转化”数学能力。发展学生的分析问题能力和表达能力。经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。一起看看新人教版八年级下册勾股定理教案!欢迎查阅!

新人教版八年级下册勾股定理教案1

教学目标

1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题,逐步培养“数形结合”和“转化”数学能力。

2.过程与方法目标:发展学生的分析问题能力和表达能力。经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育

教学重点

1、重点:勾股定理及其逆定理的应用

2、难点:勾股定理及其逆定理的应用

一、基础知识梳理

在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定是以及它的应用.其知识结构如下:

1.勾股定理:

直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有:————————————.这就是勾股定理.

勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据.

勾股定理的直接作用是知道直角三角形任意两边的长度,求第三边的长.这里一定要注意找准斜边、直角边;二要熟悉公式的变形:

,.

2.勾股定理逆定理

“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a2+b2=c2),先构造一个直角边为a,b的直角三角形,由勾股定理证明第三边为c,进而通过“SSS”证明两个三角形全等,证明定理成立.

3.勾股定理的作用:

已知直角三角形的两边,求第三边;

勾股定理的逆定理是用来判定一个三角形是否是直角三角形的,但在判定一个三角形是否是直角三角形时应首先确定该三角形的边,当其余两边的平方和等于边的平方时,该三角形才是直角三角形.勾股定理的逆定理也可用来证明两直线是否垂直,这一点同学

勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.

三角形的三边分别为a、b、c,其中c为边,若,则三角形是直角三角形;若,则三角形是锐角三角形;若,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的边.

二、考点剖析

考点一:利用勾股定理求面积

求:(1) 阴影部分是正方形; (2) 阴影部分是长方形; (3) 阴影部分是半圆.

2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.

考点二:在直角三角形中,已知两边求第三边

例(09年山东滨州)如图2,已知△ABC中,AB=17,AC=10,BC边上的高,AD=8,则边BC的长为( )

A.21 B.15 C.6 D.以上答案都不对

【强化训练】:1.在直角三角形中,若两直角边的长分别为5cm,7cm ,则斜边长为 .

2.(易错题、注意分类的思想)已知直角三角形的两边长为4、5,则另一条边长的平方是

3、已知直角三角形两直角边长分别为5和12, 求斜边上的高.(结论:直角三角形的两条直角边的积等于斜边与其高的积,ab=ch)

考点三:应用勾股定理在等腰三角形中求底边上的高

例、(09年湖南长沙)如图1所示,等腰中,,

是底边上的高,若,求 ①AD的长;②ΔABC的面积.

考点四:应用勾股定理解决楼梯上铺地毯问题

例、(09年滨州)某楼梯的侧面视图如图3所示,其中米,,

,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为 .

分析:如何利用所学知识,把折线问题转化成直线问题,是问题解决的关键。仔细观察图形,不难发现,所有台阶的高度之和恰好是直角三角形ABC的直角边BC的长度,所有台阶的宽度之和恰好是直角三角形ABC的直角边AC的长度,只需利用勾股定理,求得这两条线段的长即可。

考点五、利用列方程求线段的长(方程思想)

1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多2米,当他把绳子的下端拉开4米后,发现下端刚好接触地面,你能帮他算出来吗?

【强化训练】:折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=4cm,BC=5cm,求CF 和EC。.

考点六:应用勾股定理解决勾股树问题

例、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中的正方形的边长为5,则正方形A,B,C,D的面积的和为

分析:勾股树问题中,处理好两个方面的问题,

一个是正方形的边长与面积的关系,另一个是正方形的面积与直角三角形直角边与斜边的关系。

考点七:判别一个三角形是否是直角三角形

例1:分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的有

【强化训练】:已知△ABC中,三条边长分别为a=n-1, b=2n, c=n+1(n>1).试判断该三角形是否是直角三角形,若是,请指出哪一条边所对的角是直角.

考点八:其他图形与直角三角形

例:如图是一块地,已知AD=4m,CD=3m,∠D=90°,AB=13m,BC=12m,求这块地的面积。

考点九:与展开图有关的计算

例、如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.

【强化训练】:如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行 cm

四、课时作业优化设计

【驻足“双基”】

1.设直角三角形的三条边长为连续自然数,则这个直角三角形的面积是_____.

2.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为( ).

A.6cm B.8.5cm C.cm D.cm

【提升“学力”】

3.如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC落在AB上,求DC的长.

4.如图,一只鸭子要从边长分别为16m和6m的长方形水池一角M游到水池另一边中点N,那么这只鸭子游的最短路程应为多少米?

5.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是

6.如图:在一个高6米,长10米的楼梯表面铺地毯,

则该地毯的长度至少是 米。

【聚焦“中考”】

8.(海南省中考题)如图,铁路上A、B两点相距25km,C、D为两村庄,DA垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站建在距A站多少千米处?

5.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是

6.如图:在一个高6米,长10米的楼梯表面铺地毯,

则该地毯的长度至少是 米。

新人教版八年级下册勾股定理教案2

一.定义

1.全等形:形状大小相同,能完全重合的两个图形.

2.全等三角形:能够完全重合的两个三角形.

二.重点

1.平移,翻折,旋转前后的图形全等.

2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.

3.全等三角形的判定:

SSS三边对应相等的两个三角形全等[边边边]

SAS两边和它们的夹角对应相等的两个三角形全等[边角边]

ASA两角和它们的夹边对应相等的两个三角形全等[角边角]

AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]

HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]

4.角平分线的性质:角的平分线上的点到角的两边的距离相等.

5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.

新人教版八年级下册勾股定理教案3

一、填空题(每空3分,共30分):

01、在直角△ABC中,斜边AB=2,则AB2+BC2+CA2=.

02、一个三角形的三个内角的比为1:2:3,它的边为4cm,则最小边为cm.

03、一个等腰三角形的两边为4cm,9cm,则它的周长为cm.

04、一块正方形土地的面积为800m2,则它的对角线长为m.

05、△ABC的三边长分别是15、36、39,这个△ABC是三角形.

06、一个三角形的三边的比为5:12:13,那么这个三角形是三角形.

07、三边之比为3:4:5的三角形的面积为24cm2,则它的周长为cm.

08、等腰三角形的腰长为10cm,底边长为12cm,则其底边上的高为cm.

09、△ABC中∠C=900,∠B=300,b=2cm,则c=cm.

10、如图,AB=AC=10cm,AD⊥BC,∠B=300,则BD2=.

二、选择题(每题4分,共20分):

11、是勾股数的是.

A4,5,6B5,7,12C12,13,15D21,28,35

12、在长为3,4,5,12,13的线段中任意取三条可构成个直角三角形.

A0B1C2D3

13、两条直角边为6cm,8cm的直角三角形的斜边上的高为cm.

A1.2B2.4C3.6D4.8

14、一个直角三角形的斜边比一条直角边多2cm,另一条直角边为6cm,则斜边的长为cm.

A、4,B、8C、10D、12

15、如图,AB=AC=10cm,CD⊥AB,∠B=150,则CD=cm.

A、2.5B、5C、10D、20

三、解答题(共50分):

16、一块长方形土地ABCD的长为28m,宽为21m,小明站在长方形的一个顶点A上,他要走到对面的另

一个顶点C上拣一只羽毛球,他至少要走多少米?(8分)

17、在正方体的一个顶点A处有一只蚂蚁,现在要向顶点B处爬行,已知正方体的棱长为3cm,BC=1cm,

则爬行的最短距离是多少?(8分)

18、有一块四边形草坪,∠B=∠D=900,AB=24m,BC=7m,CD=15m,求草坪面积.(8分)

19、小明想知道学校的旗杆有多高,他发现旗杆顶上的绳子BD垂到地面还多CD=1米,当他把绳子的

下端D拉开5米到后,发现下端D刚好接触地面A.你能帮他把旗杆的高度求出来吗?(10分)

20、圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食的最短路程是多少?(π≈3)(8分)

21、小琳家的楼梯有若干级梯子。她测得楼梯的水平宽度AC=4米,楼梯的斜面长度AB=5米,现在

她家要在楼梯面上铺设红地毯。若准备购买的地毯的单价为20元/米,则她家至少应准备多少钱?

(10分)


221381
领取福利

微信扫码领取福利

微信扫码分享