欢迎访问政务文库!

高一数学知识点总结

APLUS 分享 时间: 加入收藏 我要投稿 点赞

成功是要付出努力的,付出汗水,没有能随随便便成功的,所以我们应该付出不懈努力去学习。那么,以下是小编为大家带来的有关高一数学知识点总结梳理,欢迎参阅呀!

有关高一数学知识点总结梳理

两个复数相等的定义:

如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di

a=c,b=d。特殊地,a,b∈R时,a+bi=0

a=0,b=0.

复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。

复数相等特别提醒:

一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。

解复数相等问题的方法步骤:

(1)把给的复数化成复数的标准形式;

(2)根据复数相等的充要条件解之。

方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

求函数的零点:

(代数法)求方程的实数根;

(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

1、△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

2、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

3、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

幂函数定义:

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:

当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

高一年级数学知识点总结

定义:

x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

范围:

倾斜角的取值范围是0°≤α<180°。

理解:

(1)注意“两个方向”:直线向上的方向、x轴的正方向;

(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

意义:

①直线的倾斜角,体现了直线对x轴正向的倾斜程度;

②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;

③倾斜角相同,未必表示同一条直线。

公式:

k=tanα

k>0时α∈(0°,90°)

k<0时α∈(90°,180°)

k=0时α=0°

当α=90°时k不存在

ax+by+c=0(a≠0)倾斜角为A,

则tanA=-a/b,

A=arctan(-a/b)

当a≠0时,

倾斜角为90度,即与X轴垂直

1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

3、a-边长,S=6a2,V=a3

4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

5、棱柱S-h-高V=Sh

6、棱锥S-h-高V=Sh/3

7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6

9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

11、r-底半径h-高V=πr^2h/3

12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

高一上学期数学知识点归纳

1.多面体的结构特征

(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.

(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.

正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.

(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.

2.旋转体的结构特征

(1)圆柱可以由矩形绕一边所在直线旋转一周得到.

(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.

(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.

(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.

3.空间几何体的三视图

空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.

三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.

4.空间几何体的直观图

空间几何体的直观图常用斜二测画法来画,基本步骤是:

(1)画几何体的底面

在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.

(2)画几何体的高

在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.

反比例函数

形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

学好高中数学的方法

克服畏难抵触心理

我们说,做什么事情都要有一个良好的心态。据科学家们分析,人在有心态问题时是断然不能发挥其平时百分之一百的水平,如果是在中考甚至是在高考的考场当中,心态出现了严重的问题,那十年的光阴一瞬间就要功亏一篑了,这岂不是让众多考生无颜见江东父老了吗。

其实,你绝对没有必要对数学有任何的心理抵触。

举一个简单的例子,如一些应用题,虽然看上去文字描述比较多,但实际分析实用的数据仅仅有那么几个而已,然后通过建立数学模型而列出方程,进而得出答案。

等完成后你会觉得数学最难的试题也不过如此的时候,顿时你的自豪感就会由然而生,这时你对数学的抵触情绪便云开雾散,灰飞烟灭了。

上课40分钟很重要

对于课堂上老师所讲的每一个公式,每一条定理都要深究其源,这样即便在考试当中忘了公式,也可以很好的解决问题,不至于内心的慌乱和紧张。另外要充分利用好课堂这短短的45分钟的时间,尽量在课上将所学习的知识吸收,这样回到家后才能进一步展开接下来的学习,节约时间。

看书写作业的顺序

看书和写作业要注意顺序,有的老师说先写作业再复习,其实经过证明这是完全不对的。因为在下课之后到你回家时又经过了一段时间,这段时间难免你会把老师所讲的重点或细节忘记,这种情况下写作业难免会有一些问题。其实,我们要养成良好的学习方法,尽量回家后先复习一下当天学习的知识,特别是所记的笔记要重点关照,然后在写作业,这样效果更佳。

提升数学成绩的方法

注重课本上的例题

也许你会这样说:那些例题太简单了,我一看就会了。其实,如果你不注意那些“过于简单”的例题的话,在考试当中就会吃大亏。大家都知道,近几年来不论是中考、高考等各种数学考试的解答试题基本上都是经过例题改编而成,如果你平时养成了对例题不重视的习惯,那么到考试时候,它的特殊气氛会使你处处都感到紧张,进而对这样简单的试题束手无策。所以,我们一定要在平时的学习中养成注重例题的习惯,这样会在考试当中多一分胜算。

面对考试,平时要弥补漏洞

对于平时的测验和考试不要注重于成绩,一定要找到自己的漏洞。考试的功能就是要检验自己平时的学习上还有那些漏洞,有些同学过于注重成绩,怕在朋友面前丢面子。如果是这样,我劝你还是多丢面子为好。错题是你的宝贵经验,错一次并不可怕,下一次做对不就可以了。俗话说:久病成医,说一句白话,你错的越多,考试再做这样的试题正确率就会比别人更高,笑到最后的才笑得最好。

准备错题本,积累经验

学习数学,错题不可避免。对错题的心态人人各异,处理好反而会促进你的学习热情,但处理不好会使你学习数学的动力进一步减退。对于错题,希望大家准备一个本,将错题都写到这个本上,特别要写出此题所考的知识点,自己的想法,正确答案,而自己怎么不能往正确的方向上想等等。日积月累,这个本便是你宝贵的财富,也是你的“小辫子”。它是你的弱点,但攻克它虽然要费一些时间,但要相信你会在考试当中充分地体现你自己的优势的。

221381
领取福利

微信扫码领取福利

微信扫码分享