欢迎访问政务文库!

初一数学整式知识点总结

小秘书 分享 时间: 加入收藏 我要投稿 点赞

学得越多,懂得越多,想得越多,领悟得就越多,就像滴水一样,一滴水或许很快就会被太阳蒸发,但如果滴水不停的滴,就会变成一个水沟,越来越多,越来越多!以下是小编为大家带来的初一数学整式知识点总结梳理,欢迎参阅呀!

初一数学整式知识点总结梳理

一、整式

单项式和多项式统称整式。

a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。

b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。

c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)

a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数项的次数,叫做这个多项式的次数.

b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中的那一项次数.

a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

二、同底数幂的乘法

(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

b) 指数是1时,不要误以为没有指数;

c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

d)当三个或三个以上同底数幂相乘时,法则可推广为

(其中m、n、p均为整数);

e)公式还可以逆用:

(m、n均为整数)

a)幂的乘方法则:

(m,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

b)

(m,n都为整数)。

c) 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3

d)底数有时形式不同,但可以化成相同。

e) 要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

f) 积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn (n为正整数)。

g) 幂的乘方与积乘方法则均可逆向运用。

五、同底数幂的除法

a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即

(a≠0).

b)在应用时需要注意以下几点:

1) 法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0。

2)任何不等于0的数的0次幂等于1,即a0=1(a≠0) ,如100=1 ,(-2.50=1),则00无意义。

c)任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即

( a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的,当a<0时,a-p的值可能是正也可能是负的,如

, d)运算要注意运算顺序。

六、整式的乘法

单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

a)积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

b)相同字母相乘,运用同底数幂的乘法法则;

c)只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

d)单项式乘法法则对于三个以上的单项式相乘同样适用;

e)单项式乘以单项式,结果仍是一个单项式。

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

a)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

b)运算时要注意积的符号,多项式的每一项都包括它前面的符号;

c) 在混合运算时,要注意运算顺序。

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

a)多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

b)多项式相乘的结果应注意合并同类项;

c)对含有同一个字母的一次项系数是1的两个一次二项式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到

提高数学成绩常用方法有哪些

1、预习

预期常常由于 “没时间,看不懂,不必要”等等原因被忽略。实际上预习是学习的必要过程,更是提高自学能力的好方法。

2、学会听课

听分析、听思路、听应用,关键内容一字不漏,注意记录。

3、做好错题本

每个会学习的学生都会有错题本。调查发现那些没有错题本,或者是只做不用的同学,学习效果都不好。

4、用好课外书

正确认识网络课程和课外书籍,是副食,是帮助吸收的良药。

5、注重数学思维方法的培养

要注意数学思想和方法的指导,站得高,才能看得远。

如何让数学学科预习变得更高效

一、读一读。预习时要认真,要逐字逐词逐句的阅读,用笔把重点画出来,重点加以理解.遇到自己解决不了的问题,作出记号,教师讲解时作为听课的重点.

二、想一想。对预习中感到困难的问题要先思考.如果是基础问题,可以用以前的知识看看能不能弄通.如果是理解上的问题,可以记下来课上认真听讲,通过积极思考去解决.这样有利于提高对知识的理解,养成学习数学的良好思维习惯。

三、说一说。预习时可能感到认识模糊,可以与父母或同学进行讨论,在同学们的合作交流与探讨中找到正确的答案.这样即增加了学生探求新课的兴趣,有可以弄懂数学知识的实际用法,对知识有个准确的概念。

四、写一写。写一写在课前预习中也是很有必要的,预习时要适当做学习笔记,主要包括看书时的初步体会和心得,读明白了的问题的理解,对疑难问题的记录和思考等。

五、做一做。预习应用题,可以用画线段的方法帮助理解数量间的关系,弄清已知条件和所求问题,找到解题的思路.对于一些有关图形方面的问题,可以在预习中动手操作,剪剪拼拼,增加感性认识。

六、补一补。数学课新旧知识间往往存在紧密的联系,预习时如发现学习过的要领有不清楚的地方,一定要在预习时弄明白,并对旧的知识加以巩固和记忆,同时为学习新的知识打下坚实的基础。

七、练一练。往往每课时的例题都是很典型的,预习时应把例题都做一遍,加深领悟的能力.如果做题时出现错误,要想想错在哪,为什么错,怎么改错.如果仍是找不到错误的根源,可在听课时重点听,逐步领会。

该怎么提高数学课堂学习效率

课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到;

手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;

耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结.另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;

口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;

眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;

心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极.关键是理解并能融汇贯通,灵活使用.对于老师讲的新概念,应抓住关键字眼,变换角度去理解.

数学复习方法学霸分享

1.重点练习几种类型的题目

不要钻偏题、怪题、过难题的牛角尖,根据平时做套卷时的感受,多练习以下几个类型的题目。

(1)初看没有思路,但分析后能顺利做出的。通过对这类问题的练习,能够使我们对题目的考点和重点更熟悉,提高建立思路的速度和切入点的准确度,让我们能在考试中留出更多时间来处理后面难度高、阅读量大的综合题。

(2)自己经常出错的中档题。中档题在中考中每年的考查内容都差不多,题目位置也相对固定,属于解决了一个板块就能得到相应版块分数的类型。在中档题的某个题型经常出错说明对这部分内容的基本概念和常用方法理解不到位。通过练习,多总结这类题目的解题思路和技巧,把不稳定的得分变成到手的分数。中档题难度一般不会太高,所以对于自己薄弱的中档题进行突击练习一般都会有很好的效果。

(3)基础相对薄弱的同学也应该做一些常考的题目类型。比如圆的切线的判定以及与圆相关的线段计算、一次函数和反比例函数的综合、二元一次方程整数根问题等,通过练习,进一步提高我们解决这些问题的熟练度

2.学会看错题的正确方式

大部分学生都有错题本,在复习时看错题本,巩固自己的错误是不错的复习方式,但在看错题时一定要杜绝连题目带答案一起顺着看下来的方式。尽量能够将答案挡住,自己再尝试做一遍,如果做的过程中遇到问题再去看答案,并做好标注,过两天再试做一遍,争取能在期末考试前将之前的错题整体过两到三遍、加深印象。

3.认真研究每道题目的考点

做题时,我们心中要对相应题目所对应的考点有所了解,比如填空题中如果出现几何问题,主要是对图形基本性质和面积的考察,而很少考到全等三角形的证明(尺规作图写依据除外),所以我们在填空题中看到几何问题,就不用从全等方面找突破口,而是更多地注重图形的基本性质。比如平行四边形对角线互相平分、等腰三角形三线合一等。

4.尽量避免只看不算

很多同学在复习时不喜欢动笔,觉得自己看明白了就行,但俗话说“眼过千遍不如手过一遍”,不去实际操作只是看一遍题目,对题目解法和思路的印象其实是很低的。而且在计算过程中还能锻炼我们的计算能力,提高解题速度和准确性。许多同学在写证明题时很不熟练,逻辑不顺畅,也是由于平时对书写的不重视,应该趁着期末考试前的时间,多练练书写。

221381
领取福利

微信扫码领取福利

微信扫码分享