欢迎访问政务文库!

初一下数学知识点

老牛 分享 时间: 加入收藏 我要投稿 点赞

说起数学,数学是所有自然科学的基础,也是强有力的工具,对很多其他科学领域的发展起了重要的作用。以下是小编为大家带来的初一下数学知识点考点,欢迎参阅呀!

初一下数学知识点考点

平方根:

①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:

①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:

①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

数轴

1.数轴的概念

规定了原点,正方向,单位长度的直线叫做数轴。

注意:

⑴数轴是一条向两端无限延伸的直线;

⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;

⑶同一数轴上的单位长度要统一;

⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系

⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的'点不是一一对应关系。(如,数轴上的点π不是有理数)

3.利用数轴表示两数大小

⑴在数轴上数的大小比较,右边的数总比左边的数大;

⑵正数都大于0,负数都小于0,正数大于负数;

⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的(小)数

⑴最小的自然数是0,无的自然数;

⑵最小的正整数是1,无的正整数;

⑶的负整数是-1,无最小的负整数

5.a可以表示什么数

⑴a>0表示a是正数;反之,a是正数,则a>0;

⑵a<0表示a是负数;反之,a是负数,则a<0

⑶a=0表示a是0;反之,a是0,则a=0

单项式与单项式相乘

1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、系数相乘时,注意符号。

3、相同字母的幂相乘时,底数不变,指数相加。

4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

(二)单项式与多项式相乘

1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

3、积是一个多项式,其项数与多项式的项数相同。

4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

(三)多项式与多项式相乘

1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

3、多项式的`每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

4、运算结果中有同类项的要合并同类项。

5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

相反数

1.相反数

只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:

⑴相反数是成对出现的;

⑵相反数只有符号不同,若一个为正,则另一个为负;

⑶0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定

⑴任何数都有相反数,且只有一个;

⑵0的相反数是0;

⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0

3.相反数的几何意义

在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。

4.相反数的求法

⑴求一个数的相反数,只要在它的'前面添上负号“-”即可求得(如:5的相反数是-5);

⑵求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);

⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)

5.相反数的表示方法

一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。

当a>0时,-a<0(正数的相反数是负数)

当a<0时,-a>0(负数的相反数是正数)

当a=0时,-a=0,(0的相反数是0)

角的性质:

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

(2)角的大小可以度量,可以比较。

(3)角可以参与运算。

时针问题:

时针每小时300,每分钟0.50;分针每分钟60;时针与分针每分钟差5.50。

时针与分针夹角=分×5.50—时×300(分针靠近12点)

时针与分针夹角=时×300—分×5.50(时针靠近12点)

若结果大于1800,另一角度用3600减这个角度。

经过多少时间重合、垂直、在一条线上,用求出的重合、垂直、在一条线上的时间减去现在的时间。追及问题还可用追及度数/5.5。

角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

多边形

由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n—2)个三角形。n边形内角和等于(n—2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的`每个内角都等于(n—2)×1800/n,过n边形一个顶点有(n—3)条对角线,n边形共(n—3)×n/2条对角线。

圆、弧、扇形

圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点称为圆心

弧:圆上A、B两点之间的部分叫做圆弧,简称弧。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

圆心角:顶点在圆心的角叫圆心角。

学好数学要重视“四个依据”是什么

读好一本教科书——它是教学、考试的主要依据;

记好一本笔记 ——它是教师多年经验的结晶;

做好一本习题集——它是知识的拓宽;

记好一本心得笔记——它是你自己的知识。

提高数学学习的七大能力是什么

1.运算能力,否则每次考试大题第一题你就开始错!

2.空间想象能力,否则几何题会让你痛不欲生!

3.逻辑思维能力,否则以后的证明题和推导题会让你生不如死!

4.将实际问题抽象为数学问题的能力,不然应用题会让你虽死犹生!

5.形数结合互相转化的能力。这考试每次考试的压轴题哦!

6.观察、实验、比较、猜想、归纳问题的能力。不然每次选择或者填空题的最后一题找规律会让你内流满面!

7.研究、探讨问题的能力和创新能力。不然每次的附加题咱们就不用看了!

如何养成良好的数学学习习惯

制定计划,成为习惯

无论是学习哪一科,明确的目标计划都是最基本的方法,也是要被大家说烂了的提高成绩的基本。

数学也是一样,虽然公式多,定义多,图形多,但完全不影响制定数学的学习计划。学习是一个长久性的打算,因此在制定数学学习内容的过程中可以尽量的详细一点。

比如说每天做多少道题,掌握多少个公式,记住几个定义等等。这样才是学好高中数学应该做的步骤。

其次就是每天按照自己给自己的规定去做,不要想着偷懒,今天不爱做就留给明天,想着明天多做点补回来。

这种想法是非常错误的,今天的任务就要今天完成,想着自己为了提高数学成绩,无论如何都要努力。

预习与复习相结合

预习帮助大家在数学课上对知识有一个大概的了解,也对老师要讲的内容有个先知,不至于惊讶惊讶老师接下来要讲什么。

而复习就是对这一堂课的数学学习进行一个验收和反馈,检验自己是否学会数学老师讲的内容;反馈自己的学习成效,及时找到自己数学学习的问题以便及时解决。

这样在学习新的数学知识的时候就不会带着之前留下来的疑问了。这对于学好高中数学,提高数学成绩非常有帮助。

高质量的完成作业

作业是一个很好查缺补漏的过程,因此同学们想要学好数学,就一定要认真完成作业。不要依赖不会就空着等数学老师上课讲这样的想法,这样只会退步。

数学学习就是要不断的动脑解决问题,所以作业要完成,还要高质量的去完成,这样才能不断提高自己的能力。

不要空太多的题不写,就只等着老师公布正确答案和解题过程,这样一来,需要自己消化的数学问题就因为自己的懒惰变得越来越多,以至于影响之后的学习效率。

数学最常用且非常实用的学习方法

1、预习很重要:

往往被忽略,理由:没时间,看不懂,不必要等。预习是学习的必要过程,还是提高自学能力的好方法。

2、听讲有学问:

听分析、听思路、听应用,关键内容一字不漏,注意记录。

3、做好错题本:

每个会学习的学生都会有。最好再加个“好题本”。发现许多同学没有错题本,或者是只做不用。这样学习效果都不好。

4、用好课外书:

正确认识网络课程和课外书籍,是副食,是帮助吸收的良药,绝对不是课堂学习的替代品。

5、注意总结和反思:

知识点、解题方法和技巧、经验和教训。

6、接受数学思想方法的指导:

要注意数学思想和方法的指导,站得高,才能看得远。

221381
领取福利

微信扫码领取福利

微信扫码分享