好的教案应该考虑所需教具的准备,如教学用具、实验器材、多媒体设备等,以确保教学的顺利进行。这里提供优秀的最新高一数学教案,方便大家写最新高一数学教案参考。
最新高一数学教案篇1
一、教材分析及处理
函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。
对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。
教学重点是函数的概念,难点是对函数概念的本质的理解。
学生现状
学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。
二、教学三维目标分析
1、知识与技能(重点和难点)
(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。
(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。
(3)、掌握定义域的表示法,如区间形式等。
(4)、了解映射的概念。
2、过程与方法
函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:
(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。
(2)、面向全体学生,根据课本大纲要求授课。
(3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。
3、情感态度与价值观
(1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案《《函数》教学设计》。
(2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。
三、教学器材
多媒体ppt课件
四、教学过程
教学内容教师活动学生活动设计意图
《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活
知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫
思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接
新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题
对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识
函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法
注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点
习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系
映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫
小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点
五、教学评价
为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。
在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。
虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。
最新高一数学教案篇2
教学目标
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学重难点
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学过程
等比数列性质请同学们类比得出。
【方法规律】
1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。
2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)
3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。
【示范举例】
例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。
(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=。
例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。
例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。
最新高一数学教案篇3
教学目的:
掌握圆的标准方程,并能解决与之有关的问题
教学重点:
圆的标准方程及有关运用
教学难点:
标准方程的灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:
1.说出下列圆的方程
⑴圆心(3,-2)半径为5
⑵圆心(0,3)半径为3
2.指出下列圆的圆心和半径
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
3.判断3x-4y-10=0和x2+y2=4的位置关系
4.圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)
练习:
1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。
例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)
四、小结练习P771,2,3,4
五、作业P811,2,3,4
最新高一数学教案篇4
学习重点:了解弧度制,并能进行弧度与角度的换算
学习难点:弧度的概念及其与角度的关系。
学习目标
①了解弧度制,能进行弧度与角度的换算。
②认识弧长公式,能进行简单应用。对弧长公式只要求了解,会进行简单应用,不必在应用方面加深。
③了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题。
教学过程
一、自主学习
1、长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写)。这种度量角的单位制称为。
2、正角的弧度数是数,负角的弧度数是数,零角的弧度数是。
3、角的弧度数的绝对值。(为弧长,为半径)
4:完成特殊角的度数与弧度数的对应表。
角度030456090120
弧度
角度135150180210225240
弧度
角度270300315330360
弧度
5、扇形面积公式:。
二、师生互动
例1把化成弧度。
变式:把化成度。
小结:在具体运算时,弧度二字和单位符号rad可省略,如:3表示3rad,sin表示rad角的正弦。
例2用弧度制表示:
(1)终边在轴上的角的集合;
(2)终边在轴上的角的集合。
变式:终边在坐标轴上的角的集合。
例3、知扇形的周长为8,圆心角为2rad,,求该扇形的面积。
三、巩固练习
1、若=—3,则角的终边在()。
A、第一象限B、第二象限
C、第三象限D、第四象限
2、半径为2的圆的圆心角所对弧长为6,则其圆心角为。
四、课后反思
五、课后巩固练习
1、用弧度制表示终边在下列位置的角的集合:
(1)直线y=x;(2)第二象限。
2、圆弧长度等于截其圆的内接正三角形边长,求其圆心角的弧度数,并化为度表示。
最新高一数学教案篇5
教学目标:
(1) 了解集合、元素的概念,体会集合中元素的三个特征;
(2) 理解元素与集合的"属于"和"不属于"关系;
(3) 掌握常用数集及其记法;
教学重点:掌握集合的基本概念;
教学难点:元素与集合的关系;
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容
二、新课教学
(一)集合的有关概念
1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们
能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3. 思考1:判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数;
(2) 我国的小河流;
(3) 非负奇数;
(4) 方程的解;
(5) 某校2021级新生;(6) 血压很高的人;
(7) 的数学家;
(8) 平面直角坐标系内所有第三象限的点
(9) 全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
4. 关于集合的元素的特征
(1)确定性:设A是一个给定的集合,_是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5. 元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A
(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA
例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A
4A,等等。
6.集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C...表示,集合的元素用小写的拉丁字母a,b,c,...表示。
7.常用的数集及记法:
非负整数集(或自然数集),记作N;
正整数集,记作N_或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R;
(二)例题讲解:
例1.用"∈"或""符号填空:
(1)8 N; (2)0 N;
(3)-3 Z; (4) Q;
(5)设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国 A。
例2.已知集合P的元素为, 若3∈P且-1P,求实数m的值。
(三)课堂练习:
课本P5练习1;
归纳小结:
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。
作业布置:
1.习题1.1,第1- 2题;
2.预习集合的表示方法。
最新高一数学教案篇6
教学目标:
①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1 比较数的大小
例 1 比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1
板书:
解:Ⅰ)当0
∵5.1<5.9 ∴loga5.1>loga5.9
Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,
∵5.1<5.9 ∴loga5.1
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小?
生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板书:略。
师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数 的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。
2 函数的定义域, 值 域及单调性。
例 2 ⑴求函数y=的定义域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。
板书:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
师:接下来我们一起来解这个不等式。
分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,再根据对数函数的单调性求解。
师:请你写一下这道题的解题过程。
生:<板书>
解: x2+2x-3>0 x<-3 或 x>1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2
不等式的解为:1
例 3 求下列函数的值域和单调区间。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。
下面请同学们来解⑴。
生:此函数可看作是由y= log0.5u, u= x- x2复合而成。
板书:
解:⑴∵u= x- x2>0, ∴0
u= x- x2=-(x-0.5)2+0.25, ∴0
∴y= log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u= x- x2
y= log0.5u
y=log0.5(x- x2)
函数y=log0.5(x- x2)的单调递减区间(0,0.5],单调递 增区间[0.5,1)
注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则函数都不存在,性质就无从谈起。
师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什么区别?
生:⑴的底数是常值,⑵的底数是字母。
师:那么⑵如何来解?
生:只要对a进行分类讨论,做法与⑴类似。
板书:略。
⒊小结
这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。
⒋作业
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)
⑵已知函数y=loga(x2-2x),(a>0,a≠1)
①求它的单调区间;②当0
⑶已知函数y=loga (a>0, b>0, 且 a≠1)
①求它的定义域;②讨论它的奇偶性; ③讨论它的单调性。
⑷已知函数y=loga(ax-1) (a>0,a≠1),
①求它的定义域;②当x为何值时,函数值大于1;③讨论它的单调性。
5.课堂教学设计说明
这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一 .比较数的大小,想通过这一部分的练习,
培养同学们构造函数的思想和分类讨论、数形结合的思想。二.函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。
最新高一数学教案篇7
1.教材(教学内容)
本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用.
2.设计理念
本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标.
3.教学目标
知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题.
过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用.
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美.
4.重点难点
重点:任意角三角函数的定义.
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透.
5.学情分析
学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念.在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构.
6.教法分析
“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构.这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用.
7.学法分析
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标.
8.教学设计(过程)
一、引入
问题1:我们已经学过了任意角和弧度制,你对“角”这一概念印象最深的是什么?
问题2:研究“任意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么?
问题3:当角clip_image002的终边在绕顶点O转动时,终边上的一个点P(x,y)必定随着终边绕顶点O作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间的关系能用一个函数模型来刻画吗?
二、原有认知结构的改造和重构
问题4:当角clip_image002[1]是锐角时,clip_image004,线段OP的长度clip_image006这几个量之间有何关系?
学生回答,分析结论,指出这种关系就是我们在初中学习过的锐角三角函数
学生阅读教材,并思考:
问题5:锐角三角函数是我们高中意义上的函数吗?如何利用函数的定义来理解它?
学生讨论并回答
三、新概念的形成
问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函数的定义吗?
学生回答,并阅读教材,得到任意角三角函数的定义.并思考:
问题7:任意角三角函数的定义符合我们高中所学的函数定义吗?
展示任意角三角函数的定义,并指出它是如何刻划圆周运动的
并类比函数的研究方法,得出任意角三角函数的定义域和值域。
四、概念的运用
1.基础练习
①口算clip_image008的值.
②分别求clip_image010的值
小结:ⅰ)画终边,求终边与单位圆交点的坐标,算比值
ⅱ)诱导公式(一)
③若clip_image012,试写出角clip_image002[2]的值。
④若clip_image015,不求值,试判断clip_image017的符号
⑤若clip_image019,则clip_image021为第象限的角.
例1.已知角clip_image002[3]的终边过点clip_image024,求clip_image026之值
若P点的坐标变为clip_image028,求clip_image030的值
小结:任意角三角函数的等价定义(终边定义法)
例2.一物体A从点clip_image032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clip_image034,试用clip_image034[1]表示物体A所在位置的坐标。若该物体作圆周运动的圆的半径变为clip_image006[1],如何用clip_image034[2]来表示物体A所在位置的坐标?
小结:可以采用三角函数模型来刻画圆周运动
五、拓展探究
问题8:当角clip_image002[4]的终边绕顶点O作圆周运动时,角clip_image002[5]的终边与单位圆的交点clip_image039的坐标clip_image041clip_image043与角clip_image002[6]之间还可以建立其它函数模型吗?
思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clip_image002[7]正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clip_image002[8]余弦值、正切值呢?
六、课堂小结
问题9:请你谈谈本节课的收获有哪些?
七、课后作业
教材P21第6、7、8题
最新高一数学教案篇8
第一节集合的含义与表示
学时:1学时
[学习引导]
一、自主学习
1.阅读课本.
2.回答问题:
⑴本节内容有哪些概念和知识点?
⑵尝试说出相关概念的含义?
3完成练习
4小结
二、方法指导
1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。
2、理解集合元素的特性,并会判断元素与集合的关系
3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。
4、在学习中要特别注意理解空集的意义和记法
[思考引导]
一、提问题
1.集合中的元素有什么特点?
2、集合的常用表示法有哪些?
3、集合如何分类?
4.元素与集合具有什么关系?如何用数学语言表述?
5集合和是否相同?
二、变题目
1.下列各组对象不能构成集合的是()
A.北京大学2008级新生
B.26个英文字母
C.著名的艺术家
D.2008年北京奥运会中所设定的比赛项目
2.下列语句:①0与表示同一个集合;
②由1,2,3组成的集合可表示为或;
③方程的解集可表示为;
④集合可以用列举法表示。
其中正确的是()
A.①和④B.②和③
C.②D.以上语句都不对
[总结引导]
1.集合中元素的三特性:
2.集合、元素、及其相互关系的数学符号语言的表示和理解:
3.空集的含义:
[拓展引导]
1.课外作业:习题11第题;
2.若集合,求实数的值;
3.若集合只有一个元素,则实数的值为;若为空集,则的取值范围是.
撰稿:程晓杰审稿:宋庆
最新高一数学教案篇9
一、教学目标:
1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.
2.培养广泛联想的能力和热爱数学的态度.
二、教学重点:
在于让学生领悟生活中处处有变量,变量之间充满了关系
教学难点:培养广泛联想的能力和热爱数学的态度
三、教学方法:
探究交流法
四、教学过程
(一)、知识探索:
阅读课文P25页。实例分析:书上在高速公路情境下的问题。
在高速公路情景下,你能发现哪些函数关系?
2.对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?
问题小结:
1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有确定的值与之对应,才称它们之间有函数关系。
2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有确定的y值与之对应。
3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。
(二)、新课探究——函数概念
1.初中关于函数的定义:
2.从集合的观点出发,函数定义:
给定两个非空数集A和B,如果按照某个对应关系f,对于A中的任何一个数x,在集合B中都存在确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A上的函数,记作或f:A→B,或y=f(x),x∈A.;
此时x叫做自变量,集合A叫做函数的定义域,集合{f(x)︱x∈A}叫作函数的值域。习惯上我们称y是x的函数。
定义域,值域,对应法则
4.函数值
当x=a时,我们用f(a)表示函数y=f(x)的函数值。
最新高一数学教案篇10
一、教材
首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。
二、学情
教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。
三、教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握两条直线平行与垂直的判定,能够根据其判定两条直线的位置关系。
(二)过程与方法
在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。
(三)情感态度价值观
在猜想论证的过程中,体会数学的严谨性。
四、教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的判定的推导。
五、教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢?
利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
最新高一数学教案篇11
课题:
人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》
教材分析:
本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。
学情分析:
在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。
教学目标:
(一)教学知识点:
1.对数的概念。
2.对数式与指数式的互化。
(二)能力目标:
1.理解对数的概念。
2.能够进行对数式与指数式的互化。
(三)德育渗透目标:
1.认识事物之间的相互联系与相互转化,
2.用联系的观点看问题。
教学重点与难点:
重点是对数定义,难点是对数概念的理解。
最新高一数学教案篇12
教学目标
1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度熟悉单调性和奇偶性。
(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想。
3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数。减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数。偶函数的定义,函数奇偶性的判定方法,奇函数。偶函数的图像。
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。
(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。
最新高一数学教案篇13
高中数学第一册(上)1.1集合(一)教学案例教学目标:1、理解集合、集合的元素的概念;2、了解集合的元素的三个特性;3、记忆常用数集的表示;4、会判断元素与集合的关系,
集合(一)教学案例。教学重点:1、集合的概念;2、集合的元素的三个特征性质教学难点:1、集合的元素的三个特性;2、数集与数集的关系课前准备:1、教具准备:多媒体制作数学家康托介绍,包括头像、生平、对数学发展所作的贡献;本节课所需的例题、图形等。2、布置学生预习1.1集合.教学设计:一、[创设情境]多媒体展示激发兴趣:为科学而疯的人——康托托康(Contor,Georg)(1845-1918),俄罗斯—德国数学家、19世纪数学伟大成就之一—集合论的创立人。康托生於俄國聖彼得堡,父母親是丹__人,父親出生於丹__首都哥本哈根,是一個富裕的商人,他的母親瑪麗具有藝術家血統,他父母親年輕時移居到俄國聖彼得堡,康托就出生在那裡,康托是家中長子,並於1856年全家移居到德國法蘭克福,也因為康托多次改變國籍,許多國家都認為康托的成就都是它們培養出來的。康托自幼对数学有浓厚兴趣。23岁获博士学位,以后一直从事数学教学与研究。他所创立的集合论已被公认为全部数学的基础。1874年康托的有关无穷的概念,震撼了知识界。康托凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质新的思想模式,建立了处理数学中的无限的基本技巧,从而极大地推动了分析与逻辑的发展。他研究数论和用三角函数地表示函数等问题,发现了惊人的结果:证明有理数是可列的,而全体实数是不可列的。由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的康托向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托的集合论是一种“疾病”,康托的概念是“雾中之雾”,甚至说康托是“疯子”.来自数学__们的巨大精神压力终于摧垮了康托,使他心力交瘁,患了精神__症,被送进精神病医院.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时期获得的.真金不怕火炼,康托的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托的工作“可能是这个代所能夸耀的最巨大的工作。”可是这时康托仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托在一家精神病院去世。今天,我们将学习高中数学第一章集合与简易逻辑的1.1集合(一),让我们回顾一下初中涉及到集合的有关知识。二、[复习旧知识]复习提问:1.在初中,我们学过哪些集合?实数集、二元一次方程的解集、不等式(组)的解集、点的集合等。2.在初中,我们用集合描述过什么?角平分线、线段的垂直平分线、圆、圆的内部、圆的外部等。
实数有理数无理数整数分数正无理数负无理数正分数负分数负整数自然数正整数零3.实数的分类3、实数的分类:
实数正实数负实数零
4、以下由学生完成:(1)、把下列各数填入相应的圈内
0、、2.5、、、-6、、8%、19
整数集合分数集合无理数集合
(2).把下列各数填入相应的大括号内1、-10、、、-2、3.6、、—0.1、8、负有理数集合:{}
整数集合:{}
正实数集:{}
无理数集:{}
3.解不等式组(1)2x-3〈5
4.绝对值小于3的整数是—————————————————三、[学习互动]1、观察下列对象(1)2,4,6,8,10,12;(2)所有的直角三角形;(3)与一个角的两边距离相等的点;(4)满足x-3>2的全体实数;(5)本班全体男生;(6)我国古代四大发明;(7)2007年本省高考考试科目;(8)2008年奥运会的球类项目,
《集合(一)教学案例》通过学生观察以上对象后,教师提问:[集合的概念](1)集合是什么?某些指定的对象集在一起就成为一个集合,简称集。(2)什么是集合的元素?集合中的每个对象叫做这个集合的元素。(3)集合、集合的元素怎样表示?一般用大括号表示集合且常用大写字母表示;集合中的元素用小写字母表示。(4)集合中的元素与集合的关系a是集合A的元素,称a属于A,记作a∈A;a不是集合A的元素,称a不属于A,记作aA。2、探讨下列问题(1){1,2,2,3}是含有1个1、2个2、1个3的集合吗?(2)的科学家能构成一个集合吗?(3){a,b,c,d}与{b,c,d,a}是否表同一个集合?通过师生共同探讨得出下面结论:通过师生共同探讨得出结论:[集合中的元素的性质]确定性:集合中的元素必须是确定的。集合的元素的特点互异性:集合中的元素必须是互异的。无序性:集合中的元素是无先后顺序的。组成集合的元素可以是:数、图、人、事物等。[常用数集的表示](1)自然数集:用N表示(2)正整数集:用N﹡或N+表示(3)整数集:用Z表示(4)有理数集:用Q表示(5)实数集:用R表示(正实数集用R__或R+表示)四、[四、[互动参与]例1下面的各组对象能否构成集合是()(A)所有的好人(B)小于2004的实数(C)和2004非常接近的数(D)方程x2-3x+2=0的根例2用符号填空(1)3.14Q(2)πQ(3)0N+(4)0N
32(5)(-2)0N__(6)Q
3232(7)Z(8)—R
五、[分层议练]1、选择题(1)下列不能形成集合的是()A、所有三角形B、《高一数学》中的所有难题C、大于π的整数D、所以的无理数2、判断正误(1){x2,3x+2,5x3-x}={5x3-x,x2,3x+2}()(2)若4x=3,则xN()(3)若xQ,则xR()(4)若xN,则xN+()
常用数集属于a∈AN、N__(或N+)、Z、Q、R。集合集合的概念元素与集合的关系集合中元素的性质确定性互异性无序性不属于aA
本节课设计的目的:通过创设情境激发学生的学习兴趣,课前预习培养学生的自学能力;多媒体辅助教学提高课堂效益,使教学呈现方式多样化;探索现代教学手段与高中数学教学的整合。
最新高一数学教案篇14
【内容与解析】
本节课要学的内容有函数的概念指的是函数的概念及符号的理解,理解它关键就是能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用。学生已经学过了集合并且初中对函数的概念已经作了介绍,本节课的内容函数的概念就是在此基础上的发展的。由于它还与基本初等函数和函数模型等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是函数的概念,函数的三要素,所以解决重点的关键是通过实例领悟构成函数的三个要素;会求一些简单函数的定义域和值域。
【教学目标与解析】
1、教学目标
(1)理解函数的概念;
(2)了解区间的概念;
2、目标解析
(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;
【问题诊断分析】
在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
【教学过程】
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的`高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有唯一的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有唯一的一个臭氧层空洞面积S与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?
4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称?
4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R?
4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?
【例题】:
例1求下列函数的定义域
分析:求定义域就是使式子有意义的x的取值所构成的集合;定义域一定是集合!
例2已知函数
分析:理解函数f(x)的意义
例3下列函数中哪个与函数相等?
例4在下列各组函数中与是否相等?为什么?
分析:
(1)两个函数相等,要求定义域和对应关系都一致;
(2)用x还是用其它字母来表示自变量对函数实质而言没有影响.
【课堂目标检1测】
教科书第19页1、2.
【课堂小结】
1、理解函数的定义,函数的三要素,会球简单的函数的定义域和函数值;
2、理解区间是表示数集的一种方法,会把不等式转化为区间。
最新高一数学教案篇15
【考点阐述】
两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
【考试要求】
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.
【考题分类】
(一)选择题(共5题)
1.(海南宁夏卷理7)=()
A.B.C.2D.
解:,选C。
2.(山东卷理5文10)已知cos(α-)+sinα=
(A)-(B)(C)-(D)
解:,,
3.(四川卷理3文4)()
(A)(B)(C)(D)
【解】:∵
故选D;
【点评】:此题重点考察各三角函数的关系;
4.(浙江卷理8)若则=()
(A)(B)2(C)(D)
解析:本小题主要考查三角函数的求值问题。由可知,两边同时除以得平方得,解得或用观察法.
5.(四川延考理5)已知,则()
(A)(B)(C)(D)
解:,选C
(二)填空题(共2题)
1.(浙江卷文12)若,则_________。
解析:本小题主要考查诱导公式及二倍角公式的应用。由可知,;而。答案:
2.(上海春卷6)化简:.
(三)解答题(共1题)
1.(上海春卷17)已知,求的值.
[解]原式……2分
.……5分
又,,……9分
.……12分文章
上一篇:怎么写初中数学教案模板
下一篇:一年级美术教案简洁