在人们的日常生活和工作做缺不了对事物的计数、各种数量之间的计算以及比较相关的量,这里都需要用到数学的知识和思想方法。接下来小编在这里给大家分享一些关于人教版七年级数学上册知识点,供大家学习和参考,希望对大家有所帮助。
人教版七年级数学上册知识点
篇一:
正数和负数
⒈正数和负数的概念
负数:比0小的数正数:比0大的数0既不是正数,也不是负数
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2.具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:-8℃
3.0表示的意义
⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。如:
(3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
有理数
1.有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。3,整数也能化成分数,也是有理数
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8?也是偶数,-1,-3,-5?也是奇数。
2.有理数的分类
⑴按有理数的意义分类⑵按正、负来分正整数
整数0正有理数正分数
有理数有理数0(0不能忽视)
负整数
分数负有理数负分数
总结:①正整数、0统称为非负整数(也叫自然数)
②负整数、0统称为非正整数
③正有理数、0统称为非负有理数
④负有理数、0统称为非正有理数
数轴
⒈数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不
可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3.利用数轴表示两数大小
⑴在数轴上数的大小比较,右边的数总比左边的数大;
⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的(小)数
⑴最小的自然数是0,无的自然数;
⑵最小的正整数是1,无的正整数;
⑶的负整数是-1,无最小的负整数
5.a可以表示什么数
⑴a>0表示a是正数;反之,a是正数,则a>0;
⑵a<0表示a是负数;反之,a是负数,则a<0
⑶a=0表示a是0;反之,a是0,,则a=0
相反数
⒈相反数
只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;
⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定
⑴任何数都有相反数,且只有一个;
⑵0的相反数是0;
⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0
3.相反数的几何意义
在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法
⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);
⑵求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);
⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化
简得5)
5.相反数的表示方法
⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。
当a>0时,-a<0(正数的相反数是负数)
当a<0时,-a>0(负数的相反数是正数)
当a=0时,-a=0,(0的相反数是0)
绝对值
⒈绝对值的几何定义
一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义
⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.
可用字母表示为:
①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)经典考题
如数轴所示,化简下列各数
|a|,|b|,|c|,|a-b|,|a-c|,|b+c|
解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,
所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c
3.绝对值的性质
任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;
⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;
⑶任何数的绝对值都不小于原数。即:|a|≥a;
⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;
⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;
⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;
⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)
经典考题
已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值
解:因为|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0
所以|a+3|=0,|2b-2|=0,|c-1|=0
即a=-3,b=1,c=1
所以a+b+c=-3+1+1=-1
4.有理数大小的比较
⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;
⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数
大于负数。
5.绝对值的化简
①当a≥0时,|a|=a;②当a≤0时,|a|=-a
6.已知一个数的绝对值,求这个数
一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。如:|a|=5,则a=土5
有理数的加减法
1.有理数的加法法则
⑴同号两数相加,取相同的符号,并把绝对值相加;
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;
⑷一个数与零相加,仍得这个数。
2.有理数加法的运算律
⑴加法交换律:a+b=b+a
⑵加法结合律:(a+b)+c=a+(b+c)
在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:
①互为相反数的两个数先相加——“相反数结合法”;
②符号相同的两个数先相加——“同号结合法”;
③分母相同的数先相加——“同分母结合法”;
④几个数相加得到整数,先相加——“凑整法”;
⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质
一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:
⑴当b>0时,a+b>a⑵当b<0时,a+b<a⑶当b=0时,a+b=a< p="">
4.有理数减法法则
减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。
5.有理数加减法统一成加法的意义
在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.
和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”
②按运算意义读作“负8减7减6加5”
6.有理数加减混合运算中运用结合律时的一些技巧:
Ⅰ.把符号相同的加数相结合(同号结合法)
(-33)-(-18)+(-15)-(+1)+(+23)
原式=-33+(+18)+(-15)+(-1)+(+23)(将减法转换成加法)
=-33+18-15-1+23(省略加号和括号)
=(-33-15-1)+(18+23)(把符号相同的加数相结合)
=-49+41(运用加法法则一进行运算)
=-8(运用加法法则二进行运算)
Ⅱ.把和为整数的加数相结合(凑整法)
(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)
原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)(将减法转换成加法)
=6.6-5.2+3.8-2.6-4.8(省略加号和括号)
=(6.6-2.6)+(-5.2-4.8)+3.8(把和为整数的加数相结合)
=4-10+3.8(运用加法法则进行运算)
=7.8-10(把符号相同的加数相结合,并进行运算)=-2.2(得出结论)
Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)313217-+-+-524528
321137原式=(--)+(-+)+(+-)552248
1=-1+0-8
1=-18-
Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)312)+(-3)-(-10)-(+1.25)483
13121原式=(+)+(+3)+(-3)+(+10)+(-1)84834
13121=+3-3+10-184834
31112=(3-1)+(-3)+1044883
12=2-3+1023
1=-3+136
1=106(+0.125)-(-3
Ⅴ.把带分数拆分后再结合(先拆分后结合)-31617+10-12+45112215
篇二:
第一章有理数
1.1正数与负数
①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)
②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。
③0既不是正数也不是负数。0是正数和负数的分界,是的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等
1.2有理数
1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;
(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;
(2)数轴三要素:原点、正方向、单位长度;
(3)原点:在直线上任取一个点表示数0,这个点叫做原点;
(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上
的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)
4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,
数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3有理数的加减法
①有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律
②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4有理数的乘除法
①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0;
乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律
②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;
两数相除,同号得正,异号得负,并把绝对值相除;
0除以任何一个不等于0的数,都得0。
1.5有理数的乘方
1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做
指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a<10。
4、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.
第二章整式的加减
2.1整式
1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数.单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.
2、单项式的系数:是指单项式中的数字因数;
3、单项数的次数:是指单项式中所有字母的指数的和.
4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里ab是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.
5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
6、单项式和多项式统称为整式。33
2.2整式的加减
1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关
3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
6、整式加减的一般步骤:
一去、二找、三合
(1)如果遇到括号按去括号法则先去括号.(2)结合同类项.(3)合并同类项
第三章一元一次方程
3.1一元一次方程
1、方程是含有未知数的等式。
2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。注意:判断一个方程是否是一元一次方程要抓住三点:
1)未知数所在的式子是整式(方程是整式方程);
2)化简后方程中只含有一个未知数;
3)经整理后方程中未知数的次数是1.
3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
4、等式的性质:1)等式两边同时加(或减)同一个数(或式子),结果仍相等;
2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.
3.2、3.3解一元一次方程
在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用.因此在解方程时还要注意以下几点:
①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;
②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号)移项要变号;
④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;
⑤系数化为1::字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要分子、分母搞颠倒。
3.4实际问题与一元一次方程
一.概念梳理
⑴列一元一次方程解决实际问题的一般步骤是:①审题,特别注意关键的字和词的意义,弄清相关
数量关系;②设出未知数(注意单位);③根据相等关系列
出方程;④解这个方程;⑤检验并写出答案(包括单位名称)。
⑵一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案。
二、思想方法(本单元常用到的数学思想方法小结)
⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想就是方程思想.
⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知
数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最
后逐步把方程转化为x=a的形式.体现了化“未知”为“已知”的化归思想.
⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的
数量关系很直观地展示出来,体现了数形结合的优越性.
⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方
案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.
三、数学思想方法的学习
1.解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.
2.寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.
3.列方程(\)解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;
⑵是要判断方程的解是否符合题目中的实际意义.
四、一元一次方程典型例题
m3例1.已知方程2x-+3x=5是一元一次方程,则.
解:由一元一次方程的定义可知m-3=1,解得m=4.或m-3=0,解得m=3
所以m=4或m=3
警示:很多同学做到这种题型时就想到指数是1,从而写成m=1,这里一定要注意x的指数是(m
-3).
2例2.已知x??2是方程ax-(2a-3)x+5=0的解,求a的值.
解:∵x=-2是方程ax-(2a-3)x+5=0的解
∴将x=-2代入方程,
2得a•(-2)-(2a-3)•(-2)+5=02
化简,得4a+4a-6+5=0
∴a=18
点拨:要想解决这道题目,应该从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=-2代入方程,然后再解关于a的一元一次方程就可以了.
例3.解方程2(x+1)-3(4x-3)=9(1-x).
解:去括号,得2x+2-12x+9=9-9x,
移项,得2+9-9=12x-2x-9x.
合并同类项,得2=x,即x=2.
点拨:此题的一般解法是去括号后将所有的未知项移到方程的左边,已知项移到方程的右边,其实,我们在去括号后发现所有的未知项移到方程的左边合并同类项后系数不为正,为了减少计算的难度,我们可以根据等式的对称性,把所有的未知项移到右边去,已知项移到方程的左边,最后再写成x=a的形式.
例4.解方程
解析:方程两边乘以8,再移项合并同类项,得同样,方程两边乘以6,再移项合并同类项,得
方程两边乘以4,再移项合并同类项,得x?1?12
方程两边乘以2,再移项合并同类项,得x=3.
说明:解方程时,遇到多重括号,一般的方法是从里往外或从外往里运用乘法的分配律逐层去特号,而本题最简捷的方法却不是这样,是通过方程两边分别乘以一个数,达到去分母和去括号的目的。
例5.解方程
解析:方程可以化为
去括号移项合并同类项,得-7x=11,所以x=?11.7
说明:一见到此方程,许多同学立即想到老师介绍的方法,那就是把分母化成整数,即各分数分子分母都乘以10,再设法去分母,其实,仔细观察这个方程,我们可以将分母化成整数与去分母两步一步到位,第一个分数分子分母都乘以2,第二个分数分子分母都乘以5,第三个分数分子分母都乘以10.
例6.解方程
就能很快得到答案:x=3.
3,12=3×4,知识链接:此题如果直接去分母,或者通分,数字较大,运算烦琐,发现分母6=2×
20=4×5,30=5×6,联系到我们小学曾做过这样的分式化简题,故采用拆项法解之比较简便.
例7.参加某保险公司的医疗保险,住院治疗的病人可享受分段报销,?保险公司制度的报销细
则如下表,某人今年住院治疗后得到保险公司报销的金额是1260元,那么此人的实际医疗费是()
A.2600元解析:设此人的实际医疗费为x元,根据题意列方程,得
500×0+500×60%+(x-500-500)×80%=1260.
解之,得x=2200,即此人的实际医疗费是2200元.故选B.
点拨:解答本题首先要弄清题意,读懂图表,从中应理解医疗费是分段计算累加求和而得的.因
60%<1260<2000×80%,所以可知判断此人的医疗费用应按第一档至第三档累加计算.为500×
例8.我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费.如果某户居民今年5月缴纳了17元水费,那么这户居民今年5月的用水量为__________立方米.
7<17,所以该户居民今年5月的用水量超标.解析:由于1×
1+2(x-7)=17,解得x=12.设这户居民5月的用水量为x立方米,可得方程:7×
所以,这户居民5月的用水量为12立方米.
篇三:
初一上册数学知识点
第一章有理数知识点一:有理数的分类
有理数
正整数
含正有限小数和无限循环小数
正分数
零
负整数
负有理数
负分数
含负有限小数和无限循环小数
有理数的另一种分类
整数自然数
0负整数
有理数
正分数
分数
负分数
想一想:零是整数吗?自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?
零是整数;自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数。判断正误:
①不带“-”号的数都是正数()②如果a是正数,那么-a一定是负数()③不存在既不是正数,也不是负数的数()④0℃表示没有温度()
人教版七年级数学学习方法
养成良好的学习数学习惯
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
要建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再 犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
人教版七年级数学学习技巧
1.“方程”思想
数学是研究事物的空间形式和数量关系。初中阶段最重要的数量关系是平等关系,其次是不平等关系。最常见的等价关系是“方程”。例如,在等速运动中,距离、速度和时间之间存在等价关系,可以建立相关方程:速度时间=距离。在这样的方程中,通常会有已知的量和未知量。含有这种未知量的方程是“方程”,它可以从方程中已知的量导出。未知量的过程是求解方程的过程。我们在小学时接触过简单的方程,而在初中第一年,我们系统地学习解一变量的第一个方程,并总结出解一变量的第一个方程的五个步骤。如果我们学习并掌握这五个步骤,任何一个等式都能顺利地解决。在2年级和3年级,我们还将学习解决二次方程、二次方程和简单三角方程。在高中,我们还学习指数方程、对数方程、线性方程、参数方程、极坐标方程等。求解这些方程的思想几乎是相同的。通过一些方法,将它们转化为一元一阶方程或一元二次方程的形式,然后通过求解一元一阶方程或求一元二次方程根公式的常用五步法求解。物理中的能量守恒、化学中的化学平衡方程以及大量实际应用都需要建立方程和求解方程才能得到结果。因此,学生必须学会如何解一维一阶方程和一维二阶方程,然后才能学好其他形式的方程。
所谓的“方程”思想是数学问题,特别是未知现实见面和已知数量的复杂关系,善于利用“方程”的观点建立相关方程,然后利用求解方程的方法来解决这个问题。
2.“数与形相结合”的思想
数字和形状在世界各地随处可见。任何东西,除去它的定性方面,都是留给数学研究的,只有形状和尺寸的属性。代数和几何是初中数学的两个分支。然而,代数的研究依赖于“形式”,而几何学则依赖于“数”,而“数与形的结合”则是一种趋势。我们学得越多,“数字”和“形状”就越不可分割,在高中时,“数字”和“形状”是密不可分的。有一门关于用代数方法研究几何问题的课程,叫做“分析几何”。第三年,平面笛卡尔坐标系建立后,函数的研究就离不开图像。通过图像的帮助,很容易找到问题的关键点,解决问题。在今后的数学学习中,应重视“数与形相结合”的思维训练。只要任何问题都与“形状”有关,就应该根据主题的含义起草一个草图来分析它。这样做不仅是直观的,而且是全面的。诚信强,容易找到切入点,对解决问题有很大的益处。品尝甜味的人会逐渐养成“数形结合”的好习惯。
上一篇:初三数学知识点分类复习资料
下一篇:六年级上册数学知识点归纳【最新】