欢迎访问政务文库!

数列的求和教学反思

A+ 分享 时间: 加入收藏 我要投稿 点赞

教学反思需要跳出自我,反思自我。所谓跳出自我就是经常地开展听课交流,研究别人的教学长处,他山之石,可以攻玉,通过学习比较,找出理念上的差距,解析手段、方法上的差异,从而提升自己。下面小编给大家带来数列的求和教学反思5篇,希望大家喜欢!

数列的求和教学反思篇1

对于高考班来说,现在的主要任务就是储备足够的知识和经验,迎接高考。而最近几年的高考题中,创新题多数都是数列部分的题目,所以,本节课的主要教学目标就是复习《等差数列》的相关知识点,掌握高考常考题型,并能达到举一反三。

这节课我是这样安排的:首先向同学们总结了近五年的高考题中数列部分的题目所占分值的平均分,意在引起同学们的重视,然后展示本节课的复习目标,()让同学们能够了解考试大纲的要求,第三让同学们总结本节的知识要点,并利用一定的时间记忆,主要是记忆公式,因为这部分的题目主要是选择适当的公式解决问题,第四是典型例题,我总结了三种例题,也是高考易考题型。

根据本课学习目标,我把学生的自主探究与教师的适时引导有机结合,把知识点通过各种方式展现在学生面前,使教学过程零而不散,教学活动多而不乱,学生在轻松愉悦的氛围中学习知识,拓宽视野。本节课的成功之处:

1.在课堂实施过程中,教学思路清晰、明确,学生对问题的回答也比较踊跃,并能对问题的解法提出自己的不同观点,找出最简单、有效的解决方法。

2.教学方式符合教学对象。复习课就是要以总结的方式对学过的知识加以巩固,同学们通过本节课的复习目标,很方便的了解了重难点,通过典型例题直观的了解考试要点。

不足之处:

1.时间安排欠合理。在让同学们背公式的过程中花费时间太长。课后反思,如果当初就把几个公式展示出来,让同学们背,然后通过教师考察或小组成员之间考察,可能会达到事半功倍的效果。

2.“放”的力度不够。在分析典型例题时,总担心个别基础不好的同学不会,本来可以由学生阐述解题方法,也由我来说,所以学生的主动权给的不够多。

在今后的教学中,我会注意给学生足够的时间和空间,搭建学生展示自己的平台,要充分相信学生的实力,合理安排教学时间。

总之,认认真真准备一堂课,课后会有很多感触,及时整理自己教学上的得与失,如果每一节课都这样精心准备,每一节课后都认真反思,确实对自己今后的教学很多的启示。别饿坏了那匹马教学反思标志设计教学反思辨别方向教学反思

数列的求和教学反思篇2

在高一(5)班上好“等差数列求和公式”这一堂课后,通过和学生的互动,我对求和公式上课时遇到的几点问题提出了一点思考.

一、对内容的理解及相应的教学设计

1.“数列前n项的和”是针对一般数列而提出的一个概念,教材在这里提出这个概念只是因为本节内容首次研究数列前n项和的问题.因此,教学设计时应注意“从等差数列中跳出来”学习这个概念,以免学生误认为这只是等差数列的一个概念.

2.等差数列求和公式的教学重点是公式的推导过程,从“掌握公式”来解释,应该使学生会推导公式、理解公式和运用公式解决问题.其实还不止这些,让学生体验推导过程中所包含的数学思想方法才是更高境界的教学追求,这一点后面再作展开.本节课在这方面有设计、有突破,但教师组织学生讨论与交流的环节似乎还不够充分,因为这个层面上的学习更侧重于让学生“悟”.

3.用公式解决问题的内容很丰富.本节课只考虑“已知等差数列,求前n项”的问题,使课堂不被大量的变式问题所困扰,而能专心将教学的重点放在公式的推导过程.这样的处理比较恰当.

二、求和公式中的数学思想方法

在推导等差数列求和公式的过程中,有两种极其重要的数学思想方法.一种是从特殊到一般的探究思想方法,另一种是从一般到特殊的化归思想方法.

从特殊到一般的探究思想方法大家都很熟悉,本节课基本按教材的设计,依次解决几个问题。

从一般到特殊的化归思想方法的揭示是本节课的最大成功之处.以往人们常常只注意到“倒序相加”是推导等差数列求和公式的关键,而忽视了对为什么要这样做的思考.同样是求和,与的本质区别是什么?事实上,前者是100个不相同的数求和,后者是50个相同数的求和,求和的本质区别并不在于是100个还是50个,而在于“相同的数”与“不相同的数”.相同的数求和是一个极其简单并且在乘法中早已解决了的问题,将不“相同的数求和”(一般)化归为“相同数的求和”(特殊),这就是推导等差数列求和公式的思想精髓.不仅如此,将一般的求和问题化归为我们会求(特殊)的求和问题这种思想还将在以后的求和问题中反复体现.

在等差数列求和公式的推导过程中,其实有这样一个问题链:

为什么要对和式分组配对?(因为想转化为相同数求和)

为什么要“倒序相加”?(因为可以避免项数奇偶性讨论)

为什么“倒序相加”能转化为相同数求和?(因为等差数列性质)

由此可见,“倒序相加”只是一种手段和技巧,转化为相同数求和是解决问题的思想,等差数列自身的性质是所采取的手段能达到目的的根本原因.

三、几点看法

1.注意挖掘基础知识的教学内涵

对待概念、公式等内容,如果只停留在知识自身层面,那么教学常常会落入死记硬背境地.其实越是基础的东西其所包含的思想方法往往越深刻,值得大家带领学生去认真体验,当然这样的课不好上.

2.用好教材

现在的教材有不少好的教学设计,需要教师认真对待,反复领会教材的意图.当然,由于教材的客观局限性,还需要教师去处理教材.譬如本节课,课堂所呈现的基本上是教材的内容顺序和教学设计,但面对教材所给的全部内容时,课堂能否在某个环节上停下来,能否合理地选取教材的一部分内容作为这一节课的内容,而将其他的内容留到后面的课,这就体现教师的认识和处理教材的水平.

3.无止境

一堂课所要追求的教学价值当然是尽量能多一些更好,但应分清主次.譬如本节课还用了几个“实际生活问题”,意图是明显的,教师的提问和处理也比较恰当.课没有最好只有更好!

数列的求和教学反思篇3

这节课是高二数学第七章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。

(一)对课前备课的反思

首先,是备学生。学生的基础知识薄弱,基本的分析问题、解决问题的能力欠缺、对于数学的悟性和理解能力都有待提高,因此在选择教学内容上就考虑到了学生现有的认知水平。

其次,课程内容的选择。内容是数列求和,是现阶段学习数列部分一项很重要的内容,在高考题中经常出现。关于数列求和的方法有很多,常见的如倒序相加法、分组求和法、裂项相消法、错位相减法等。在本节课主要介绍了裂项相消法和错位相减法,其目的是让学生先有一个经验,就是能够认识到一些非等差、等比数列都能转化为等差、等比数列后再分别求和。

第三,教学呈现方式的定位。这是很关键的环节,直接影响到本节课的成败。本节课设计上一个难点就是如何设计例题。不能求全而脱离学生实际,也不能一味搞成题海战术,因此结合本班学生的特点,选择设计的题目在难度和容量上较为侧重基础,以适应学生的认知水平,使学生在教学过程中能灵活应用,思维得到提高。

(二)对课中教学的反思

这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整并且系统的课。本节课教学过程分为导入新课、知识回顾、例题讲解、变式训练、课堂小结、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。

(1)学生的创新解答

在例1求1002-992+982-972+962-952L+42-32+22-12的值问题的解决上学生观察式子相邻两项之间都是平方差的形式,利用平方差公式,最后转化成一个等差数列。但是学生出现了两种做法。一种是转化成

199+195+191+L+7+3,这样转化是学生最容易想到的。另一种是转化成了

100+99+98+L+2+1,这两种方法都是值得肯定的,特别是第二种转化方法让整个课堂变得活跃起来。

(2)课堂中的偶发事件

在例2教学设计中我就曾预设到学生会从两个角度来考虑,一种是得到50个1,另一种就是将奇数和偶数分别合并。若是第二种就可以很自然就引出另一种求和方法——分组求和法。但是一位同学的回答出乎我的意料,这种做法在我预想之外,当时我对他的陈述及时做出肯定和鼓励,同时我的脑子在快速地反应怎样总结他的解法,等他讲完了,我首先是对他的做法给予了肯定,并且引导学生发现n个正偶数的和n个正奇数的和之差恰好就等于项数n。尽管能从容不慌地面对了偶发事件,但是还是略为显得处理的粗糙了一点,对他的表述没有概括到位。

(三)课后反思,再设计

一节课下来,我摸索出了一节课的设计要贴近学生的实际,符合他们的认知水平,按照学生的认知规律来组织教学。在课堂教学过程中,要始终把学生放在第一位,学生是学习的主体,教师充当的是引导者。学生总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独特的见解,这样不仅使学生的好方法、好思路得以推广,而且对学生也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可以拓宽教师的教学思路,提高教学水平。

数列的求和教学反思篇4

这节课是高中数学必修5第二章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。

我将从以下几个方面进行反思:

(一)对课前备课的反思

教学反思不仅仅只是针对课堂教学实际的反思,也应该包括对备课、教案进行反思。在备课过程中,教学设计前后共修改了4次,最后形成完整的一节课的设计。为什么反复修改了4次之多,其中有几个很关键的地方值得一提。

首先,是备学生。我所教的是文科普通班,入班前的数学平均分仅为44分,在第一次测验中平均分还不到60分,学生的基础知识薄弱,基本的分析问题、解决问题的能力欠缺、对于数学的悟性和理解能力都有待提高。因此在选择教学内容上就考虑到了学生现有的认知水平。

其次,课程内容的选择。内容是数列的求和是现阶段学习数列部分一项很重要的内容,在高考题中经常出现。等到高三复习时再讲还是在高一阶段就慢慢渗透给学生还是值得商榷的。我认为高中数学的学习应该是螺旋上升的,而不是直线型。在高一阶段学生能够掌握的知识是要渗透给学生,学生经历过的,形成一定的经验,到了高三复习阶段就能唤醒这些经验和记忆。关于数列的求和的方法有很多,常见的如倒序相加法、并项法、拆项法、分组求和法、裂项相消法、错位相减法等。在本节课主要介绍了并项法和分组求和法,其目的是让学生先有一个经验,就是能够认识到一些非等差、等比数列都能转化为等差、等比数列后再分别求和。这样对后继学习裂项相消法、错位相减法做一些铺垫。

第三,教学呈现方式的定位。这是很关键的环节,直接影响到本节课的成败。本节课设计上一个难点就是如何设计例题。不能求全而脱离学生实际,也不能一味搞成题海战术,因此结合本班学生的特点,选择设计的题目在难度和容量上较为侧重基础,以适应学生的认知水平,使学生在教学过程中能灵活应用,思维得到提高。

(二)对课中教学的反思

这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。本节课教学过程分为导入新课、知识回顾、例题讲解、变式训练、课堂小结、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。

亮点之处:

学生创新解答

在例1求100?99?98?97?96?95??4?3?2?1的值问题的解决上学生观察式子相邻两项之间都是平方差的形式,利用平方差公式,最后转化成一个等差数列。但是学生出现了两种做法。一种是转化成199+195+191+?+7+3,这样转化是学生最容易想到的。另一种是转化成了100+99+98+?+2+1,这两种方法都是值得肯定的,特别是第二种转化方法让整个课堂变得活跃起来。

在接下来的练习中,教师的设想是学生能够想到将相邻两项合并成一项结果是1,这样很容易就能得到结果。但是高元顺同学并没有在我设想的思路上走,而是给出了一个特别的回答,他的回答是:我是这样认为的,如果这个数列是6项的话,那么第5项是-5,第6项是6,用-1+2=1,1+(-3)=-2,-2+4=2,2+(-5)=-3,-3+6=3,因此得到前6项的和就等于项数的一半。这个数列是100项,那就等于50。S200 就等于100,所以S201 就等于-101。

他的回答博得听课的老师的一致赞同。他使用的方法通过找规律提出猜想,实际上就是使用了数学思想方法中一个很重要的方法——递推法。

(2)学生成为课堂的主体,教师要甘当学生的绿叶

由于数学的抽象、思维严谨等特点,学生往往对于一些较为复杂或者变化多样的题目容易望而生畏,出现懒得动脑思考、动笔去做的现象。教师也常因为时间的限制不可能给学生过多的时间去做“无用功”。在本节课上我放手让学生去思考,让学生去摸索。不怕学生出错,就是让学生能够在摸索中增强思维能力、解题技能和计算经验。特别是在例2中,教师针对题目做了简要的分析和提示,让学生去尝试着解题。朱馨同学的板书详尽,将思路方法概括表述出来,过程完整。只是结果出现了一个小错误,教师在点评过程中给予指出,同时也个结果错误也是学生经常犯的。

在这两个例题教学过程中我体会到了学生获得成功的喜悦,这也说明了给学生以思考的时间和空间,学生的回答是不会让老师感到失望了,而是充满了惊喜。

(3)从容面对课堂中的偶发事件

在教学设计中我就曾预设到学生会从两个角度来考虑,一种是得到50个1,另一种就是将奇数和偶数分别合并。若是第二种就可以很自然就引出另一种求和方法——分组求和法。但是高元顺同学的回答出乎我的意料,这种做法在我预想之外,当时我面带微笑鼓励他说下去,对他的陈述及时做出肯定和鼓励,同事我的脑子在快速的反应怎样总结他的解法,等他陈述完了,我首先是对他的做法给予了肯定,并且引导学生发现n个正偶数的和n个正2222222222

奇数的和只差恰好就等于项数n。尽管能从容不慌地面对了偶发事件,但是还是略为显得处理的粗糙了一点,对他的表述没有概括到位。

积极的回答的出来。

(三)课后反思,再设计

一节课下来,我摸索出了一节课的设计要贴近学生的实际,符合他们的认知水平,按照学生的认知规律来组织教学。在课堂教学过程中,要始终把学生放在第一位,学生是学习的主体,教师充当的是引导者。学生总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独特的见解,这样不仅使学生的好方法、好思路得以推广,而且对学生也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可以拓宽教师的教学思路,提高教学水平。

若是再教这部分内容时我应该重新调整一下我的教学顺序,如在复习完公式后,可以先提出1+2+3+?+100=?在此基础上进行变式1-2+3-4?-99+100=?,这样再给出练习1,学生有了经验自然很容易就解决了。在例题2问题中,可以再降低一下难度,因此可以将后面的练习3作为例题。而将原例2作为练习的题目。这样的做更体现了知识的循序渐进和螺旋上升,学生容易理解和接受。

(四)感受

上一届的“凤凰杯”让我印象深刻,同时也期盼着也能参加“成长杯”。当李加莉老师宣布由我来参加这届的“成长杯”我感觉我的压力好大了。经过一段时间的精心选题和反复修改教学设计,我终于站在了“成长杯”的讲台了,心情复杂——激动、兴奋、紧张…… 直到下课的铃声想起我的一颗心才算踏实下来。

东北师范大学的孔凡哲教授曾在给我们讲座时说过:没有精心的预设,就没有精彩的生成。我一直都是深刻记得这句话,也在教学中实践它。但是我仍然感觉自己做不到“精彩”而更多的是“平淡无奇”。是这节课我有了深刻的体会,让我开始审视我前面几个月所走过了路,才发现教学真的是需要智慧,做到用心去体会,用心去设计,用心去聆听学生的声音……

感谢这次参赛机会,让我在失败中磨练,在挫折中不断完善自己,最终坚强地站在讲台上,让我感受到了“成长”的喜悦。希望在今后的教学中我能总结经验,不断的完善自己,增强专业知识和技能,有效教学和创新教学,让自己尽快“成长

数列的求和教学反思篇5

本节课是高三一轮复习课,主要是对特殊数列求和。对于数列的复习,我觉得主要是复习好两个方面,一个是如何求数列的通项公式,另一个是如何求解数列的前n项和。

这里的求和,对学生来说是一个难度很大的内容,因为此前学生一直是使用等差和等比数列的求和公式进行计算的,让他们忽然去理解和掌握错位相减和裂项相消等方法去求和,难度可想而知,所以这堂课不仅仅是复习课,而且也是一堂新课,课题是求和,学生一看就明白,但求和的对象变了,求和的方法变了。我在教学时,尊重学生的理解和掌握能力,循序渐进,不赶进度,学生要是不能掌握,那就再来一遍,特别是错位相减法,学生知道什么样的数列可以用错位相减法,但算不出正确的结果,所以课堂上在学生板演的基础上我再归纳一下做错位相减法的题目时要注意的地方,什么地方容易错,什么地方要注意等,争取在做作业时不要再犯同样的错误。而且在经后的教学过程中要多培养学生的运算能力以及解题能力,提高他们的动手能力,思维逻辑能力和分析问题的能力,数列求和在整个数列知识中试比较综合的内容,知识点多,方法也多,在做题时首先要思考一下该用什么方法,然后再着手,加上细心才能把题目做对,而现在的学生就是缺乏这点耐心和细心,总想着花最少的时间做较多的事,有时还不检验最后的结果,这是我们教师在教学过程中要渗透的地方,教会学生耐心、细心地做题,确保题目的正确率,在今后的教学中我会在这方面加强培养学生,同时在备课的时候加强培养学生的动手、动脑能力。

221381
领取福利

微信扫码领取福利

微信扫码分享